| [1] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
|
| [2] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
| [3] |
Raja Arul GL, Toruner MD, Gatenby RA, et al. Ecoevolutionary biology of pancreatic ductal adenocarcinoma[J]. Pancreatology, 2022, 22(6): 730-740. DOI: 10.1016/j.pan.2022.06.005.
|
| [4] |
Hu ZI, O'Reilly EM. Therapeutic developments in pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol, 2024, 21(1): 7-24. DOI: 10.1038/s41575-023-00840-w.
|
| [5] |
Shah A, Ganguly K, Rauth S, et al. Unveiling the resistance to therapies in pancreatic ductal adenocarcinoma[J]. Drug Resist Updat, 2024, 77: 101146. DOI: 10.1016/j.drup.2024.101146.
|
| [6] |
Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6(1): 263. DOI: 10.1038/s41392-021-00658-5.
|
| [7] |
Denk D, Greten FR. Inflammation: the incubator of the tumor microenvironment[J]. Trends Cancer, 2022, 8(11): 901-914. DOI: 10.1016/j.trecan.2022.07.002.
|
| [8] |
Yang L, Qiao S, Zhang G, et al. Inflammatory processes: key mediators of oncogenesis and progression in pancreatic ductal adenocarcinoma (PDAC)[J]. Int J Mol Sci, 2024, 25(20): 10991. DOI: 10.3390/ijms252010991.
|
| [9] |
Landskron G, De la Fuente M, Thuwajit P, et al. Chronic inflammation and cytokines in the tumor microenvironment[J]. J Immunol Res, 2014, 2014: 149185. DOI: 10.1155/2014/149185.
|
| [10] |
Hu X, Zhao J, Lin Z, et al. Mendelian randomization for causal inference accounting for pleiotropy and sample structure using genome-wide summary statistics[J]. Proc Natl Acad Sci USA, 2022, 119(28): e2106858119. DOI: 10.1073/pnas.2106858119.
|
| [11] |
Chen LG, Tubbs JD, Liu Z, et al. Mendelian randomization: causal inference leveraging genetic data[J]. Psychol Med, 2024, 54(8): 1461-1474. DOI: 10.1017/S0033291724000321.
|
| [12] |
Tam V, Patel N, Turcotte M, et al. Benefits and limitations of genome-wide association studies[J]. Nat Rev Genet, 2019, 20(8): 467-484. DOI: 10.1038/s41576-019-0127-1.
|
| [13] |
Cano-Gamez E, Trynka G. From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases[J]. Front Genet, 2020, 11: 424. DOI: 10.3389/fgene.2020.00424.
|
| [14] |
Zhao JH, Stacey D, Eriksson N, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets[J]. Nat Immunol, 2023, 24(9): 1540-1551. DOI: 10.1038/s41590-023-01588-w.
|
| [15] |
Liu B, Lyu L, Zhou W, et al. Associations of the circulating levels of cytokines with risk of amyotrophic lateral sclerosis: a Mendelian randomization study[J]. BMC Med, 2023, 21(1): 39. DOI: 10.1186/s12916-023-02736-7.
|
| [16] |
Fang P, Liu X, Qiu Y, et al. Exploring causal correlations between inflammatory cytokines and ankylosing spondylitis: a bidirectional mendelian-randomization study[J]. Front Immunol, 2023, 14: 1285106. DOI: 10.3389/fimmu.2023.1285106.
|
| [17] |
Bowden J, Del Greco M F, Minelli C, et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I 2 statistic[J]. Int J Epidemiol, 2016, 45(6): 1961-1974. DOI: 10.1093/ije/dyw220.
|
| [18] |
Burgess S, Scott RA, Timpson NJ, et al. Using published data in mendelian randomization: a blueprint for efficient identification of causal risk factors[J]. Eur J Epidemiol, 2015, 30(7): 543-552. DOI: 10.1007/s10654-015-0011-z.
|
| [19] |
Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted Median estimator[J]. Genet Epidemiol, 2016, 40(4): 304-314. DOI: 10.1002/gepi.21965.
|
| [20] |
Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption[J]. Int J Epidemiol, 2017, 46(6): 1985-1998. DOI: 10.1093/ije/dyx102.
|
| [21] |
Cohen JF, Chalumeau M, Cohen R, et al. Cochran's Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy[J]. J Clin Epidemiol, 2015, 68(3): 299-306. DOI: 10.1016/j.jclinepi.2014.09.005.
|
| [22] |
Garrity PA, Chen D, Rothenberg EV, et al. Interleukin-2 transcription is regulated in vivo at the level of coordinated binding of both constitutive and regulated factors[J]. Mol Cell Biol, 1994, 14(3): 2159-2169. DOI: 10.1128/mcb.14.3.2159-2169.1994.
|
| [23] |
Sekula P, Fabiola Greco M, Pattaro C, et al. Mendelian randomization as an approach to assess causality using observational data[J]. J Am Soc Nephrol, 2016, 27(11): 3253-3265. DOI: 10.1681/ASN.2016010098.
|
| [24] |
Kurz E, Hirsch CA, Dalton T, et al. Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer[J]. Cancer Cell, 2022, 40(7): 720-737. e5. DOI: 10.1016/j.ccell.2022.05.006.
|
| [25] |
Pimentel JM, Zhou JY, Wu GS. The role of TRAIL in apoptosis and immunosurveillance in cancer[J]. Cancers, 2023, 15(10): 2752. DOI: 10.3390/cancers15102752.
|
| [26] |
Di Cristofano F, George A, Tajiknia V, et al. Therapeutic targeting of TRAIL death receptors[J]. Biochem Soc Trans, 2023, 51(1): 57-70. DOI: 10.1042/BST20220098.
|
| [27] |
Davidovich P, Higgins CA, Najda Z, et al. cFLIP L acts as a suppressor of TRAIL-and Fas-initiated inflammation by inhibiting assembly of caspase-8/FADD/RIPK1 NF-κB-activating complexes[J]. Cell Rep, 2023, 42(12): 113476. DOI: 10.1016/j.celrep.2023.113476.
|
| [28] |
Wang Y, Qian X, Wang Y, et al. Turn TRAIL into better anticancer therapeutic through TRAIL fusion proteins[J]. Cancer Med, 2025, 14(1): e70517. DOI: 10.1002/cam4.70517.
|
| [29] |
Moeng S, Son SW, Seo HA, et al. Luteolin-regulated microRNA-301-3p targets caspase-8 and modulates TRAIL sensitivity in PANC-1 cells[J]. Anticancer Res, 2020, 40(2): 723-731. DOI: 10.21873/anticanres.14003.
|
| [30] |
Hunzeker ZE, Zhao L, Kim AM, et al. The role of IL-22 in cancer[J]. Med Oncol, 2024, 41(10): 240. DOI: 10.1007/s12032-024-02481-8.
|
| [31] |
Huang Y, Yu F, Ding Y, et al. Hepatic IL22RA1 deficiency promotes hepatic steatosis by modulating oxysterol in the liver[J]. Hepatology, 2025, 81(5): 1564-1582. DOI: 10.1097/HEP.0000000000000998.
|
| [32] |
Zhang S, Yang G. IL22RA1/JAK/STAT signaling acts as a cancer target through pan-cancer analysis[J]. Front Immunol, 2022, 13: 915246. DOI: 10.3389/fimmu.2022.915246.
|
| [33] |
He W, Wu J, Shi J, et al. IL22RA1/STAT3 signaling promotes stemness and tumorigenicity in pancreatic cancer[J]. Cancer Res, 2018, 78(12): 3293-3305. DOI: 10.1158/0008-5472.CAN-17-3131.
|
| [34] |
Tjomsland V, Spångeus A, Välilä J, et al. Interleukin 1α sustains the expression of inflammatory factors in human pancreatic cancer microenvironment by targeting cancer-associated fibroblasts[J]. Neoplasia, 2011, 13(8): 664-675. DOI: 10.1593/neo.11332.
|
| [35] |
Broderick L, Hoffman HM. IL-1 and autoinflammatory disease: biology, pathogenesis and therapeutic targeting[J]. Nat Rev Rheumatol, 2022, 18(8): 448-463. DOI: 10.1038/s41584-022-00797-1.
|
| [36] |
Gelfo V, Romaniello D, Mazzeschi M, et al. Roles of IL-1 in cancer: from tumor progression to resistance to targeted therapies[J]. Int J Mol Sci, 2020, 21(17): 6009. DOI: 10.3390/ijms21176009.
|