切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 14 ›› Issue (01) : 128 -134. doi: 10.3877/cma.j.issn.2095-3232.2025004

综述

肝癌微血管侵犯的术前预测研究进展
尹泽新1, 杨继林1, 李有尧1, 吴美龙1, 刘利平1,()   
  1. 1.518020 暨南大学第二临床医学院(深圳市人民医院)肝胆胰外科
  • 收稿日期:2024-10-30 出版日期:2025-02-10
  • 通信作者: 刘利平
  • 基金资助:
    普通外科国家临床重点建设专科项目(国卫办医政函【2022】468 号)

Research progress in preoperative prediction of microvascular invasion in liver cancer

Zexin Yin1, Jilin Yang1, Youyao Li1, Meilong Wu1, Liping Liu1,()   

  1. 1.Department of Hepatobiliary and Pancreatic Surgery, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
  • Received:2024-10-30 Published:2025-02-10
  • Corresponding author: Liping Liu
引用本文:

尹泽新, 杨继林, 李有尧, 吴美龙, 刘利平. 肝癌微血管侵犯的术前预测研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 128-134.

Zexin Yin, Jilin Yang, Youyao Li, Meilong Wu, Liping Liu. Research progress in preoperative prediction of microvascular invasion in liver cancer[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 14(01): 128-134.

肝癌微血管侵犯(MVI)是肝癌术后复发的独立危险因素。在术前能够准确预测肝癌微血管侵犯的发生,对指导后续治疗和改善预后有重要意义。影像组学方法在此领域近年来进展颇多,本文总结了临床指标、传统影像学语义特征,以及新兴的影像组学3 个方面在术前预测MVI 的进展,以期对后续的研究提供帮助。

Microvascular invasion (MVI) of liver cancer is an independent risk factor for postoperative recurrence of liver cancer.Accurate preoperative prediction of the occurrence of MVI of liver cancerplays a significant role in guiding subsequent treatment and improve clinical prognosis.In recent years,radiomics have obtained significant progress in this field.In this article,research progress in preoperative prediction of MVI by clinical parameters, semantic features of traditional and emerging radiomics were reviewed, aiming to provide assistance for subsequent research.

[1]
Banerjee S, Wang DS, Kim HJ, et al.A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma[J].Hepatology, 2015,62(3):792-800.
[2]
Wang H, Wu MC, Cong WM.Microvascular invasion predicts a poor prognosis of solitary hepatocellular carcinoma up to 2 cm based on propensity score matching analysis[J].Hepatol Res, 2019, 49(3):344-354.
[3]
蒋亚波, 郭卫星, 程树群.肝细胞癌伴门静脉癌栓发生机制的研究进展[J].中国细胞生物学学报, 2017, 39(2):244-249.
[4]
Zhou J, Zhang Z, Zhou H, et al.Preoperative circulating tumor cells to predict microvascular invasion and dynamical detection indicate the prognosis of hepatocellular carcinoma[J].BMC Cancer, 2020,20(1):1047.
[5]
Wang H, Qian YW, Wu MC, et al.Liver resection is justified in patients with BCLC intermediate stage hepatocellular carcinoma without microvascular invasion[J].J Gastrointest Surg, 2020,24(12):2737-2747.
[6]
Wei X, Li N, Li S, et al.Hepatitis B virus infection and active replication promote the formation of vascular invasion in hepatocellular carcinoma[J].BMC Cancer, 2017, 17(1):304.
[7]
Deng G, Yao L, Zeng F, et al.Nomogram for preoperative prediction of microvascular invasion risk in hepatocellular carcinoma[J].Cancer Manag Res, 2019, 11:9037-9045.
[8]
Zhang C, Zhao R, Chen F, et al.Preoperative prediction of microvascular invasion in non-metastatic hepatocellular carcinoma based on nomogram analysis[J].Transl Oncol, 2021, 14(1):100875.
[9]
Qu C, Huang X, Liu K, et al.Effect of hepatitis B virus DNA replication level and anti-HBV therapy on microvascular invasion of hepatocellular carcinoma[J].Infect Agent Cancer, 2019, 14:2.
[10]
Siegel AB, Wang S, Jacobson JS, et al.Obesity and microvascular invasion in hepatocellular carcinoma[J].Cancer Invest, 2010,28(10):1063-1069.
[11]
Ma XL, Zhu J, Wu J, et al.Significance of PIVKA-Ⅱlevels for predicting microvascular invasion and tumor cell proliferation in Chinese patients with hepatitis B virus-associated hepatocellular carcinoma[J].Oncol Lett, 2018, 15(6):8396-8404.
[12]
Qi LN, Ma L, Wu FX, et al.S100P as a novel biomarker of microvascular invasion and portal vein tumor thrombus in hepatocellular carcinoma[J].Hepatol Int, 2021, 15(1):114-126.
[13]
Cucchetti A, Piscaglia F, Grigioni AD, et al.Preoperative prediction of hepatocellular carcinoma tumour grade and micro-vascular invasion by means of artificial neural network: a pilot study[J].J Hepatol, 2010,52(6):880-888.
[14]
刘连凤, 赵盛发, 王夺, 等.超声对肝癌微血管侵犯及术后早期复发的预测价值[J].广东医学, 2018, 39(20):3042-3046.
[15]
He Y, Liu F, Mou S, et al.Prognostic analysis of hepatocellular carcinoma on the background of liver cirrhosis via contrast-enhanced ultrasound and pathology[J].Oncol Lett, 2018, 15(3):3746-3752.
[16]
Renzulli M, Brocchi S, Cucchetti A, et al.Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma?[J].Radiology, 2016, 279(2):432-442.
[17]
Chou CT, Chen RC, Lin WC, et al.Prediction of microvascular invasion of hepatocellular carcinoma: preoperative CT and histopathologic correlation[J].AJR Am J Roentgenol, 2014, 203(3):W253-W259.
[18]
赵晖, 陈骏,严笑鹏, 等.肝细胞癌患者微血管侵犯的组织学风险分级与预后的关系[J].中华肝胆外科杂志, 2019, 25(6):401-405.
[19]
Wu D, Tan M, Zhou M, et al.Liver computed tomographic perfusion in the assessment of microvascular invasion in patients with small hepatocellular carcinoma[J].Invest Radiol, 2015, 50(4):188-194.
[20]
李文柱, 罗宁斌, 苏丹柯, 等.能谱CT预测肝细胞癌微血管侵犯的可行性研究[J].医学影像学杂志, 2016, 26(11):2012-2016.
[21]
Lim JH, Choi D, Park CK, et al.Encapsulated hepatocellular carcinoma: CT-pathologic correlations[J].Eur Radiol, 2006, 16(10):2326-2333.
[22]
Wu TH, Hatano E, Yamanaka K, et al.A non-smooth tumor margin on preoperative imaging predicts microvascular invasion of hepatocellular carcinoma[J].Surg Today, 2016, 46(11):1275-1281.
[23]
Hong SB, Choi SH, Kim SY, et al.MRI features for predicting microvascular invasion of hepatocellular carcinoma: asystematic review and meta-analysis[J].Liver Cancer, 2021, 10(2):94-106.
[24]
Kim MJ, Lee M, Choi JY, et al.Imaging features of small hepatocellular carcinomas with microvascular invasion on gadoxetic acid-enhanced MR imaging[J].Eur J Radiol, 2012, 81(10):2507-2512.
[25]
Huang M, Liao B, Xu P, et al.Prediction of microvascular invasion in hepatocellular carcinoma: preoperative Gd-EOB-DTPA-dynamic enhanced MRI and histopathological correlation[J].Contrast Media Mol Imaging, 2018, 2018:9674565.
[26]
Lei Z, Li J, Wu D, et al.Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the Milan criteria[J].JAMA Surg, 2016, 151(4):356-363.
[27]
Xu P, Zeng M, Liu K, et al.Microvascular invasion in small hepatocellular carcinoma: is it predictable with preoperative diffusionweighted imaging?[J].J Gastroenterol Hepatol, 2014, 29(2):330-336.
[28]
Surov A, Pech M, Omari J, et al.Diffusion-weighted imaging reflects tumor grading and microvascular invasion in hepatocellular carcinoma[J].Liver Cancer, 2021, 10(1):10-24.
[29]
Cao L, Chen J, Duan T, et al.correlation with microvascular invasion and histologic grade[J].Quant Imag Med Surg, 2019, 9(4):590-602.
[30]
Li H, Zhang J, Zheng Z, et al.Preoperative histogram analysis of intravoxel incoherent motion (IVIM) for predicting microvascular invasion in patients with single hepatocellular carcinoma[J].Eur J Radiol, 2018, 105:65-71.
[31]
Hyun SH, Eo JS, Song BI, et al.Preoperative prediction of microvascular invasion of hepatocellular carcinoma using 18F-FDG PET/CT: a multicenter retrospective cohort study[J].Eur J Nucl Med Mol Imaging, 2018, 45(5):720-726.
[32]
Wei Y, Huang Z, Tang H, et al.IVIM improves preoperative assessment of microvascular invasion in HCC[J].Eur Radiol, 2019, 29(10):5403-5414.
[33]
Guiot J, Vaidyanathan A, Deprez L, et al.A review in radiomics:making personalized medicine a reality via routine imaging[J].Med Res Rev, 2022, 42(1):426-440.
[34]
Jiang YQ, Cao SE, Cao S, et al.Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J].J Cancer Res Clin Oncol, 2021, 147(3):821-833.
[35]
Zhang J, Huang S, Xu Y, et al.Diagnostic accuracy of artificial intelligence based on imaging data for preoperative prediction of microvascular invasion in hepatocellular carcinoma: asystematic review and meta-analysis[J].Front Oncol, 2022, 12:763842.
[36]
Liu SC, Lai J, Huang JY, et al.Predicting microvascular invasion in hepatocellular carcinoma: a deep learning model validated across hospitals[J].Cancer Imaging, 2021, 21(1):56.
[37]
Xu X, Zhang HL, Liu QP, et al.Radiomic analysis of contrastenhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J].J Hepatol, 2019, 70(6):1133-1144.
[38]
Nebbia G, Zhang Q, Arefan D, et al.Pre-operative microvascular invasion prediction using multi-parametric liver MRI radiomics[J].J Digit Imaging, 2020, 33(6):1376-1386.
[39]
Zhong X, Long H, Su L, et al.Radiomics models for preoperative prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis[J].Abdom Radiol, 2022, 47(6):2071-2088.
[40]
Chong HH, Yang L, Sheng RF, et al.Multi-scale and multiparametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J].EurRadiol, 2021, 31(7):4824-4838.
[41]
Ni M, Zhou X, Lv Q, et al.Radiomics models for diagnosing microvascular invasion in hepatocellular carcinoma: which model is the best model?[J].Cancer Imaging, 2019, 19(1):60.
[42]
Meng XP, Wang YC, Zhou JY, et al.Comparison of MRI and CT for the prediction of microvascular invasion in solitary hepatocellular carcinoma based on a non-radiomics and radiomicsmethod: which imaging modality is better?[J].J Magn Reson Imaging, 2021, 54(2):526-536.
[43]
Li Y, Zhang Y, Fang Q, et al.Radiomics analysis of[18F]FDG PET/CT for microvascular invasion and prognosis prediction in very-early- and early-stage hepatocellular carcinoma[J].Eur J Nucl Med Mol Imaging,2021, 48(8):2599-2614.
[44]
Ma X, Wei J, Gu D, et al.Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT[J].Eur Radiol, 2019, 29(7):3595-3605.
[45]
Meng XP, Tang TY, Ding ZM, et al.Preoperative microvascular invasion prediction to assist in surgical plan for single hepatocellular carcinoma: better together with radiomics[J].Ann Surg Oncol, 2022,29(5):2960-2970.
[46]
Huang J, Tian W, Zhang L, et al.Preoperative prediction power of imaging methods for microvascular invasion in hepatocellular carcinoma: asystemic review and meta-analysis[J].Front Oncol, 2020,10:887.
[47]
Xu T, Ren L, Liao M, et al.Preoperative radiomicsanalysis of contrastenhanced CT for microvascular invasion and prognosis stratification in hepatocellular carcinoma[J].J Hepatocell Carcinoma, 2022, 9:189-201.
[48]
Zheng J, Chakraborty J, Chapman WC, et al.Preoperative prediction of microvascular invasion in hepatocellular carcinoma using quantitative image analysis[J].J Am Coll Surg, 2017, 225(6):778-788,e1.
[49]
孙振, 谭天华, 郑洋洋, 李喆, 宋京海.基于术前纤维蛋白原与白蛋白比值构建肝癌微血管侵犯的预测模型[J/OL].中华肝脏外科手术学电子杂志, 2024, 13(1):27-32.
[50]
Schwier M, van Griethuysen J, VangelMG, et al.Repeatability of multiparametricprostate MRI radiomicsfeatures[J].Sci Rep, 2019,9(1):9441.
[51]
Shindoh J, Andreou A, AloiaTA, et al.Microvascular invasion does not predict long-term survival in hepatocellular carcinoma up to 2cm:reappraisal of the staging system for solitary tumors[J].Ann Surg Oncol, 2013, 20(4):1223-1229.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[3] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 谢田伟, 庞于樊, 吴丽. 超声引导下不同消融术对甲状腺良性结节体积缩减率、复发率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 80-83.
[7] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[8] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[9] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[10] 李鑫, 李乐, 陈金明, 刘蕊. 基于Meta 分析构建肝癌微血管侵犯的术前预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 74-80.
[11] 时吉庆, 李坤, 陈一峰. 罕见巨大胆总管囊肿术后九年新发肝脏肿瘤一例[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 126-127.
[12] 李起, 豆明辉, 贾蓬勃, 王新团, 雷达, 李军辉, 杨瑞, 杨成林, 张小弟, 郝琪伟, 耿西林, 张煜, 刘益民, 郭智华, 姚春和, 王天翊, 蔡志强, 司书宾, 杨文彬, 耿智敏, 张东. 基于随机森林算法构建胆囊肿瘤性息肉发生的预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 46-52.
[13] 余承澍, 刘红枝, 林科灿, 林起柱, 黄霆峰, 周伟平, 程张军, 楼健颖, 郑树国, 毕新宇, 王剑明, 郭伟, 李富宇, 王坚, 郑亚民, 李敬东, 程石, 曾永毅. 肝内胆管细胞癌术后极早期复发的危险因素[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 53-59.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 郭曌蓉, 王歆光, 刘毅强, 何英剑, 王立泽, 杨飏, 汪星, 曹威, 谷重山, 范铁, 李金锋, 范照青. 不同亚型乳腺叶状肿瘤的临床病理特征及预后危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 524-532.
阅读次数
全文


摘要