切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 14 ›› Issue (01) : 46 -52. doi: 10.3877/cma.j.issn.2095-3232.2025013

临床研究

基于随机森林算法构建胆囊肿瘤性息肉发生的预测模型
李起1, 豆明辉1, 贾蓬勃2, 王新团2, 雷达3, 李军辉4, 杨瑞5, 杨成林6, 张小弟7, 郝琪伟8, 耿西林9, 张煜9, 刘益民10, 郭智华10, 姚春和11, 王天翊12, 蔡志强12, 司书宾12, 杨文彬4, 耿智敏1,(), 张东1,()   
  1. 1.710061 西安交通大学第一附属医院肝胆外科
    2.712000 陕西省咸阳市第一人民医院肝胆外科
    3.721000 陕西省宝鸡市中心医院肝胆外科
    4.710004 西安交通大学第二附属医院普通外科
    5.723000 陕西省汉中市中心医院肝胆外科
    6.725000 陕西省安康市中心医院普通外科
    7.712000 陕西省咸阳市,陕西省核工业215医院肝胆外科
    8.719000 陕西省榆林市第二医院肝胆外科
    9.710068 西安,陕西省人民医院肝胆外科
    10.721000 陕西省宝鸡市人民医院肝胆外科
    11.712000 陕西省延安大学附属咸阳医院普通外科
    12.710072 西安,西北工业大学机电学院工业工程系
  • 收稿日期:2024-10-30 出版日期:2025-02-10
  • 通信作者: 耿智敏, 张东
  • 基金资助:
    国家自然科学基金(62076194)陕西省重点研发计划(2021SF-016,2022-SF-606)西安交通大学第一附属医院院基金(2024-QN-015)

Prediction model for neoplastic gallbladder polyps based on random forest algorithm

Qi Li1, Minghui Dou1, Pengbo Jia2, Xintuan Wang2, Da Lei3, Junhui Li4, Rui Yang5, Chenglin Yang6, Xiaodi Zhang7, Qiwei Hao8, Xilin Geng9, Yu Zhang9, Yimin Liu10, Zhihua Guo10, Chunhe Yao11, Tianyi Wang12, Zhiqiang Cai12, Shubin Si12, Wenbin Yang4, Zhimin Geng1,(), Dong Zhang1,()   

  1. 1.Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
    2.Department of Hepatobiliary Surgery,the First People's Hospital of Xianyang, Xianyang 712000, China
    3.Department of Hepatobiliary Surgery, Baoji Central Hospital, Baoji 721000, China
    4.Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
    5.Department of Hepatobiliary Surgery, Hanzhong Central Hospital, Hanzhong 723000, China
    6.Department of General Surgery, Ankang Central Hospital, Ankang 725000, China
    7.Department of Hepatobiliary Surgery, No.215 Hospital of Shaanxi Nuclear Industry,Xianyang 712000, China
    8.Department of Hepatobiliary Surgery, Yulin No.2 Hospital, Yulin 719000,China
    9.Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
    10.Department of Hepatobiliary Surgery, Baoji People's Hospital, Baoji 721000, China
    11.Department of General Surgery, Xianyang Hospital of Yan'an University, Xianyang 712000, China
    12.Department of Industrial Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2024-10-30 Published:2025-02-10
  • Corresponding author: Zhimin Geng, Dong Zhang
引用本文:

李起, 豆明辉, 贾蓬勃, 王新团, 雷达, 李军辉, 杨瑞, 杨成林, 张小弟, 郝琪伟, 耿西林, 张煜, 刘益民, 郭智华, 姚春和, 王天翊, 蔡志强, 司书宾, 杨文彬, 耿智敏, 张东. 基于随机森林算法构建胆囊肿瘤性息肉发生的预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 46-52.

Qi Li, Minghui Dou, Pengbo Jia, Xintuan Wang, Da Lei, Junhui Li, Rui Yang, Chenglin Yang, Xiaodi Zhang, Qiwei Hao, Xilin Geng, Yu Zhang, Yimin Liu, Zhihua Guo, Chunhe Yao, Tianyi Wang, Zhiqiang Cai, Shubin Si, Wenbin Yang, Zhimin Geng, Dong Zhang. Prediction model for neoplastic gallbladder polyps based on random forest algorithm[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 14(01): 46-52.

目的

探讨胆囊肿瘤性息肉发生相关因素,并基于随机森林算法构建胆囊肿瘤性息肉预测模型。

方法

收集2015 年1 月至2023 年8 月在11 家医疗中心行胆囊切除术的745 例胆囊息肉患者临床病理资料。患者均签署知情同意书,符合医学伦理学规定。其中男286 例,女459 例;年龄18~80 岁,中位年龄46 岁。胆囊息肉长径为10~15 mm,中位直径11 mm。胆囊肿瘤性息肉发生相关因素的单因素分析采用χ2 或Mann-Whitney U 检验。根据患者入院时间不同分为训练集(588 例)和测试集(157 例),训练集用于随机森林预测模型的构建,测试集用于预测模型验证。采用ROC 曲线下面积(AUC)及混淆矩阵评估模型的预测能力。

结果

本研究中非肿瘤性息肉者占87.2%(650/745),其中胆固醇息肉518 例,炎性息肉55 例,腺瘤样增生47 例;肿瘤性息肉占12.8%(95/745),其中胆囊腺瘤83 例,T1 期胆囊癌12 例。单因素分析显示,息肉数量、息肉长径、息肉短径、基底情况、息肉部位、回声强度与胆囊肿瘤性息肉发生有关(χ2=20.675,Z=-4.694,Z=-2.595,χ2=6.692,Z=3.935,Z=-2.690;P<0.05)。基于胆囊肿瘤性息肉发生的危险因素及重要度排序结果构建随机森林预测模型,模型训练集和测试集AUC 分别为0.79、0.69,敏感度分别为0.74、0.63,特异度分别为0.75、0.68。基于胆囊肿瘤性息肉的随机森林预测模型混淆矩阵分析,模型训练集和测试集准确率分别为75%、68%。

结论

胆囊肿瘤性息肉发生与息肉个数、息肉大小、息肉基底情况、息肉部位、回声强度等具有明显相关性,基于随机森林算法构建的预测模型有助于胆囊肿瘤性息肉的识别,为胆囊息肉患者的外科诊疗及随访策略提供决策支持。

Objective

To explore the risk factors of neoplastic gallbladder polyps, and construct a prediction model for neoplastic gallbladder polyps based on random forest algorithm.

Methods

Clinicopathological data of 745 patients with gallbladder polyps who underwent cholecystectomy in 11 medical centers from January 2015 to August 2023 were collected.The informed consents of all patients were obtained and the local ethical committee approval was received.Among them, 286 patients were male and 459 female, aged from 18 to 80 years, with a median age of 46 years.The maximum diameter of gallbladder polyps was ranged from 10 to 15 mm, and the median diameter was 11 mm.Univariate analysis of the risk factors of neoplastic gallbladder polyps was conducted by Chi-square test or Mann Whitney U test.According to the admission date, they were divided into the training set (n=588) and test set (n=157).The training set was used to construct the random forest prediction model, and the test set was utilized to validate the prediction model.The prediction performance of this model was assessed by the area under the ROC curve (AUC) and confusion matrix.

Results

In this study, non-neoplastic gallbladder polyps patients accounted for 87.2%(650/745), including 518 cases of cholesterol polyps, 55 cases of inflammatory polyps and 47 cases of adenomatous hyperplasia.The proportion of neoplastic gallbladder polyps was 12.8%(95/745), including 83 cases of gallbladder adenomas and 12 cases of T1 gallbladder carcinomas.Univariate analysis showed that the number of polyp, maximum and minimum diameter of polyp, polyp short diameter, polyp basal status, polyp location and echo intensity were correlated with the incidence of neoplastic gallbladder polyps (χ2=20.675, Z=-4.694, Z=-2.595, χ2=6.692, Z=3.935, Z=-2.690; P<0.05).Based on the risk factors of neoplastic gallbladder polyps and the ranking of importance, a random forest prediction model was constructed.The AUC of the training and test sets was 0.79 and 0.69, with a sensitivity of 0.74 and 0.63 and a specificity of 0.75 and 0.68, respectively.Based on the random forest prediction model and confusion matrix analysis of neoplastic gallbladder polyps, the accuracy of the training and test sets was 75% and 68%,respectively.

Conclusions

The incidence of neoplastic gallbladder polyps is significantly correlated with the number of polyp, polyp size, polyp basal status, polyp location and echo intensity, etc.The prediction model based on random forest algorithm contributes to identifying neoplastic gallbladder polyps and providing decision support for surgical diagnosis, treatment and follow-up strategy for patients with gallbladder polyps.

图1 胆囊息肉中肿瘤性息肉随息肉长径的分布情况 注:曲线中数据为例数
表1 基于训练集的胆囊肿瘤性息肉发生的危险因素分析(例)
图2 胆囊肿瘤性息肉发生影响因素随机森林预测模型的重要度排序
表2 胆囊肿瘤性息肉的随机森林预测模型混淆矩阵
图3 肿瘤性息肉随机森林预测模型的ROC 曲线 注:a 为训练集,b 为测试集
[1]
中华医学会外科学分会胆道外科学组, 中国医师协会外科医师分会胆道外科医师委员会.胆囊良性疾病外科治疗的专家共识(2021版)[J].中华外科杂志, 2022, 60(1):4-9.
[2]
Riddell ZC, Corallo C, Albazaz R, et al.Gallbladder polyps and adenomyomatosis[J].Br J Radiol, 2023, 96(1142):20220115.
[3]
Zhang X, Wang J, Wu B, et al.A nomogram-based model to predict neoplastic risk for patients with gallbladder polyps[J].J Clin Transl Hepatol, 2022, 10(2):263-272.
[4]
Yu MH, Kim YJ, Park HS, et al.Benign gallbladder diseases: imaging techniques and tips for differentiating with malignant gallbladder diseases[J].World J Gastroenterol, 2020, 26(22):2967-2986.
[5]
Foley KG, Lahaye MJ, Thoeni RF, et al.Management and follow-up of gallbladder polyps: updated joint guidelines between the ESGAR,EAES, EFISDS and ESGE[J].Eur Radiol, 2022, 32(5):3358-3368.
[6]
Li Q, Dou M, Zhang J, et al.A Bayesian network model to predict neoplastic risk for patients with gallbladder polyps larger than 10 mm based on preoperative ultrasound features[J].Surg Endosc, 2023,37(7):5453-5463.
[7]
Wennmacker SZ, van Dijk AH, Raessens JHJ, et al.Polyp size of 1 cm is insufficient to discriminate neoplastic and non-neoplastic gallbladder polyps[J].Surg Endosc, 2019, 33(5):1564-1571.
[8]
Liu K, Lin N, You Y, et al.Risk factors to discriminate neoplastic polypoid lesions of gallbladder: a large-scale case-series study[J].Asian J Surg, 2021, 44(12):1515-1519.
[9]
Park HY, Oh SH, Lee KH, et al.Is cholecystectomy a reasonable treatment option for simple gallbladder polyps larger than 10 mm?[J].World J Gastroenterol, 2015, 21(14):4248-4254.
[10]
Chattopadhyay D, Lochan R, Balupuri S, et al.Outcome of gall bladder polypoidal lesions detected by transabdominal ultrasound scanning:a nine year experience[J].World J Gastroenterol, 2005, 11(14):2171-2173.
[11]
陈少华, 王成方, 李会星, 等.胆囊息肉恶变的危险因素分析[J].中华消化外科杂志, 2019, 18(2):146-151.
[12]
Sun Y, Yang Z, Lan X, et al.Neoplastic polyps in gallbladder: a retrospective study to determine risk factors and treatment strategy for gallbladder polyps[J].Hepatobiliary Surg Nutr, 2019, 8(3):219-227.
[13]
Wang X, Zhu JA, Liu YJ, et al.Conventional ultrasound combined with contrast-enhanced ultrasound in differential diagnosis of gallbladder cholesterol and adenomatous polyps (1-2 cm)[J].J Ultrasound Med, 2022, 41(3):617-626.
[14]
Babu BI, Dennison AR, Garcea G.Management and diagnosis of gallbladder polyps: a systematic review[J].Langenbecks Arch Surg,2015, 400(4):455-462.
[15]
Szpakowski JL, Tucker LY.Outcomes of gallbladder polyps and their association with gallbladder cancer in a 20-year cohort[J].JAMA Netw Open, 2020, 3(5): e205143.
[16]
Fujiwara K, Abe A, Masatsugu T, et al.Effect of gallbladder polyp size on the prediction and detection of gallbladder cancer[J].Surg Endosc,2021, 35(9):5179-5185.
[17]
张东, 李起, 张小弟, 等.胆囊息肉手术适应证的多中心回顾性研究(附2 272例报告)[J].中华消化外科杂志, 2020, 19(8):824-834.
[18]
Mellnick VM, Menias CO, Sandrasegaran K, et al.Polypoid lesions of the gallbladder: disease spectrum with pathologic correlation[J].Radiographics, 2015, 35(2):387-399.
[19]
Liu J, Qian Y, Yang F, et al.Value of prediction model in distinguishing gallbladder adenoma from cholesterol polyp[J].J Gastroenterol Hepatol, 2022, 37(10):1893-1900.
[20]
McCain RS, Diamond A, Jones C, et al.Current practices and future prospects for the management of gallbladder polyps: a topical review[J].World J Gastroenterol, 2018, 24(26):2844-2852.
[21]
Zhang D, Li Q, Zhang X, et al.Establishment of a nomogram prediction model for long diameter 10-15 mm gallbladder polyps with malignant tendency[J].Surgery, 2021, 170(3):664-672.
[22]
Yuan HX, Yu QH, Zhang YQ, et al.Ultrasound radiomics effective for preoperative identification of true and pseudo gallbladder polyps based on spatial and morphological features[J].Front Oncol, 2020, 10:1719.
[23]
Zhang X, Wang J, Wu B, et al.A nomogram-based model and ultrasonic radiomic features for gallbladder polyp classification[J].J Gastroenterol Hepatol, 2022, 37(7):1380-1388.
[24]
石镇维, 刘再毅.影像组学研究的困境和出路[J].中华放射学杂志,2022, 56(1):9-11.
[25]
李起, 金哲川, 李孟柯, 等.影像组学在胆管恶性肿瘤诊疗中的应用现状及展望[J].中国普外基础与临床杂志, 2022, 29(12):1546-1553.
[26]
Huang T, Liu H, Lin Z, et al.Preoperative prediction of intrahepatic cholangiocarcinoma lymph node metastasis by means of machine learning: a multicenter study in China[J].BMC Cancer, 2022,22(1):931.
[27]
Alaimo L, Lima HA, Moazzam Z, et al.Development and validation of a machine-learning model to predict early recurrence of intrahepatic cholangiocarcinoma[J].Ann Surg Oncol, 2023, 30(9):5406-5415.
[1] 王兴, 文阳辉, 姚戈冰, 郭平学, 杨自华. ICG荧光腹腔镜下胆囊切除术的临床应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 663-666.
[2] 康婵娟, 张海涛, 翟静洁. 胰管支架置入术治疗急性胆源性胰腺炎的效果及对患者肝功能、炎症因子水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 667-670.
[3] 易明超, 苏怀东, 陈淋, 郎成, 张伟. 自制超微创器械辅助单孔腹腔镜胆囊切除[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(02): 132-132.
[4] 刘斌, 朱慧, 席江伟, 郑卫, 王新波. 健康饮食模式降低胆结石风险的相关因素Logistic分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(02): 188-191.
[5] 李晓玉, 江庆, 汤海琴, 罗静枝. 围手术期综合管理对胆总管结石并急性胆管炎患者ERCP +LC术后心肌损伤的影响研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 57-60.
[6] 甄子铂, 刘金虎. 基于列线图模型探究静脉全身麻醉腹腔镜胆囊切除术患者术后肠道功能紊乱的影响因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 61-65.
[7] 中国研究型医院学会微创外科学专业委员会. 单孔腹腔镜胆囊切除术中国专家共识(2024版)[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 193-198.
[8] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[9] 牛斌, 饶兰英, 刘晓晨, 何龙林, 秦培鑫. 基于孟德尔随机化分析胆囊切除与结直肠肛管恶性肿瘤发生的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 313-318.
[10] 彭子洋, 王志博, 王丹, 彭浩茜, 王蕾, 彭薇, 王娟娟, 李宇, 刘学民, 吴荣谦, 向俊西, 吕毅. 智能化辅助图像实时去雾技术在腹腔镜胆囊切除术中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 328-333.
[11] 邹瑞, 王一尧, 黄泽鹏, 李铎. 经脐单孔腹腔镜胆囊切除术治疗胆囊结石疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 334-338.
[12] 孟塬, 巴合提·卡力甫, 马志刚, 王锦国, 张杰, 李玉鹏, 宋巍, 田广磊, 陈雄. 腹腔镜胆囊切除术难度评分系统在急性胆囊炎治疗中的应用价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 169-175.
[13] 王晓栋, 蔡凤军, 白燕萍, 杨永生. ICG荧光导航在腹腔镜胆囊切除术中应用的关键问题探讨[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 16-20.
[14] 张天献, 吕云福, 郑进方. LC+LCBDE与ERCP/EST+LC治疗胆囊结石合并胆总管结石效果Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 45-50.
[15] 马建惠, 韩琦, 李韶玲. 加速康复外科护理路径+量化评估对腹腔镜胆囊切除术高龄患者手术室护理满意度的影响[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(01): 53-56.
阅读次数
全文


摘要