切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 14 ›› Issue (01) : 74 -80. doi: 10.3877/cma.j.issn.2095-3232.2025011

临床研究

基于Meta 分析构建肝癌微血管侵犯的术前预测模型
李鑫1, 李乐2,(), 陈金明2, 刘蕊1   
  1. 1.010020 呼和浩特,内蒙古医科大学研究生学院
    2.024000 内蒙古自治区赤峰市医院肝胆外科
  • 收稿日期:2024-10-22 出版日期:2025-02-10
  • 通信作者: 李乐
  • 基金资助:
    内蒙古医学科学院公立医院科研联合基金项目(2023GLLH0305)

Construction of preoperative prediction model for microvascular invasion of hepatocellular carcinoma based on Meta-analysis

Xin Li1, Le Li2,(), Jinming Chen2, Rui Liu1   

  1. 1.Graduate School of Inner Mongolia Medical University, Hohhot 010020, China
    2.Department of Hepatobiliary Surgery, Chifeng Municipal Hospital, Chifeng 024000, China
  • Received:2024-10-22 Published:2025-02-10
  • Corresponding author: Le Li
引用本文:

李鑫, 李乐, 陈金明, 刘蕊. 基于Meta 分析构建肝癌微血管侵犯的术前预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 74-80.

Xin Li, Le Li, Jinming Chen, Rui Liu. Construction of preoperative prediction model for microvascular invasion of hepatocellular carcinoma based on Meta-analysis[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 14(01): 74-80.

目的

基于Meta 分析构建肝细胞癌(肝癌)微血管侵犯(MVI)的术前预测模型。

方法

检索国内外公开发表的有关肝癌MVI 预测模型构建研究。筛选检索结果、提取资料,并采用纽卡斯尔-渥太华量表(NOS)进行质量评价。对纳入研究进行Meta 分析,根据结果提取合并效应量明显的危险因素及合并危险值,构建预测模型,绘制列线图。选取2020 年1 月至2023 年1 月在赤峰市医院接受手术治疗的64 例肝癌术后患者为模型验证集,采用ROC 曲线下面积(AUC)评价模型的预测性能,采用校准曲线和临床决策曲线分析模型的准确性和临床实用性。

结果

共纳入20 项队列研究,共4 021 例肝癌患者。Meta 分析20 项研究,合并效应量最终筛选出7 个危险因素,分别为

AFP(OR=1.38,95%CI:1.22~1.54)、GGT(OR=1.49, 95%CI:1.14~1.83)、ALB(OR=0.90,95%CI:0.78~1.02)、瘤内动脉(OR=3.48, 95%CI:3.12~3.85)、瘤周强化(OR=2.49,95%CI:1.94~3.04)、肿瘤直径(OR=2.93,95%CI:2.59~3.27)和肝外生性生长(OR=2.08,95%CI:1.75~2.42)。将7 个危险因素分为影像特征组、实验室指标组和联合组,并赋值,构建3 个预测肝癌术后早期复发模型。联合组模型AUC 为0.877,敏感度和特异度分别为0.813 和0.875。该模型预测情况和实际情况大约一致,且有良好的临床收益。

结论

Meta 分析筛选的肝癌MVI 危险因素包括AFP、GGT、ALB、瘤内动脉、瘤周强化、肿瘤直径和肝外生长。基于Meta 分析构建的MVI 危险预测模型具有较好的预测性能,可作为MVI 危险评估工具。

Objective

To construct a preoperative prediction model for microvascular invasion(MVI) of hepatocellular carcinoma (HCC) based on Meta-analysis.

Methods

Studies related to prediction model for MVI of HCC published at home and abroad was retrieved.The retrieval results were screened and the data were extracted.The quality of included studies was assessed by Newcastle-Ottawa Scale (NOS).Meta-analysis was carried out for the included studies.The risk factors with significant combined effects were extracted and the risk values were combined according to the results.The prediction model was constructed and a nomogram was delineated.64 HCC patients undergoing surgery in Chifeng Municipal Hospital from January 2020 to January 2023 were selected into the model validation set.The prediction performance of this model was evaluated by the area under the ROC curve (AUC).The accuracy and clinical practicability of this model were analyzed by the calibration curve and decision curve analysis.

Results

A total of 20 cohort studies consisting of 4 021 HCC patients were included.In the Meta-analysis of these 20 studies, 7 risk factors were finally screened after combined effects, including AFP (OR=1.38, 95%CI: 1.22-1.54), GGT (OR=1.49, 95%CI: 1.14-1.83)and ALB (OR=0.90, 95%CI: 0.78-1.02), intratumoral artery (OR=3.48, 95%CI: 3.12-3.85), peritumoral enhancement (OR=2.49, 95%CI: 1.94-3.04), tumor diameter (OR=2.93, 95%CI: 2.59-3.27) and extrahepatic growth (OR= 2.08, 95%CI: 1.75-2.42), respectively.7 risk factors were divided into the imaging feature group,laboratory index group and combined group, and assigned with values, and 3 models were constructed to predict early postoperative recurrence of HCC.The AUC of the model in the combined group was 0.877, and the sensitivity and specificity were 0.813 and 0.875, respectively.The prediction performance of this model was almost consistent with the actual values, indicating high clinical benefits.

Conclusions

Meta-analysis demonstrates that the risk factors of MVI in HCC include AFP, GGT, ALB, intratumoral artery, peritumoral enhancement, tumor diameter and extrahepatic growth.The prediction model for MVI risk based on Metaanalysis yields favorable prediction performance, which can be used as an assessment tool for the risk of MVI.

表1 Meta 分析筛选的21 个肝癌MVI 危险因素
表2 肝癌MVI 预测危险因素的分组与得分
图1 肝癌MVI 预测模型的ROC 曲线 注:a 为Meta 分析构建三组预测模型;b 为已开发的模型与Meta分析构建模型比较,模型1 来自张泳欣等[19],模型2 来自Lin 等[5];MVI为微血管侵犯
图2 肝癌MVI 发生率的列线图 注:MVI 为微血管侵犯
图3 肝癌MVI 预测模型效能评估 注:a 为校准曲线,b 为临床影响曲线,c 为临床决策曲线;MVI 为微血管侵犯
[1]
Marrero JA, Welling T.Modern diagnosis and management of hepatocellular carcinoma[J].Clin Liver Dis, 2009, 13(2):233-247.
[2]
Yuen MF, Hou JL, Chutaputti A, et al.Hepatocellular carcinoma in the Asia Pacific region[J].J Gastroenterol Hepatol, 2009, 24(3):346-353.
[3]
Tabrizian P, Jibara G, Shrager B, et al.Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis[J].Ann Surg, 2015, 261(5):947-955.
[4]
Zhang C, Zhao R, Chen F, et al.Preoperative prediction of microvascular invasion in non-metastatic hepatocellular carcinoma based on nomogram analysis[J].Transl Oncol, 2021, 14(1):100875.
[5]
Lin S, Ye F, Rong W, et al.Nomogram to assist in surgical plan for hepatocellular carcinoma: a prediction model for microvascular invasion[J].J Gastrointest Surg, 2019, 23(12):2372-2382.
[6]
Zheng J, Chakraborty J, Chapman WC, et al.Preoperative prediction of microvascular invasion in hepatocellular carcinoma using quantitative image analysis[J].J Am Coll Surg, 2017, 225(6):778-788, e1.
[7]
Zhou JM, Zhou CY, Chen XP, et al.Anatomic resection improved the long-term outcome of hepatocellular carcinoma patients with microvascular invasion: a prospective cohort study[J].World J Gastrointest Oncol, 2021, 13(12):2190-2202.
[8]
Wang Z, Ren Z, Chen Y, et al.Adjuvant transarterial chemoembolization for HBV-related hepatocellular carcinoma after resection: a randomized controlled study[J].Clin Cancer Res, 2018, 24(9):2074-2081.
[9]
Shi C, Li Y, Geng L, et al.Adjuvant stereotactic body radiotherapy after marginal resection for hepatocellular carcinoma with microvascular invasion: a randomised controlled trial[J].Eur J Cancer,2022, 166:176-184.
[10]
Erstad DJ, Tanabe KK.Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma[J].Ann Surg Oncol, 2019, 26(5):1474-1493.
[11]
Rodríguez-Perálvarez M, Luong TV, Andreana L, et al.A systematic review of microvascular invasion in hepatocellular carcinoma:diagnostic and prognostic variability[J].Ann Surg Oncol, 2013,20(1):325-339.
[12]
Jiang H, Wei J, Fu F, et al.Predicting microvascular invasion in hepatocellular carcinoma: a dual-institution study on gadoxetate disodium-enhanced MRI[J].Liver Int, 2022, 42(5):1158-1172.
[13]
Jiang W, Wang J, Shen X, et al.Establishment and validation of a risk prediction model for early diabetic kidney disease based on a systematic review and meta-analysis of 20 cohorts[J].Diabetes Care, 2020,43(4):925-933.
[14]
陈晓辉, 吴淼, 陈宇驰, 等.增强CT影像学征象联合判断肝细胞癌微血管侵犯的价值研究[J].中国医学装备, 2022, 19(3):80-84.
[15]
邓家仲, 荚卫东.肝细胞癌微血管侵犯危险因素分析及术前预测列线图模型构建[J].中国普通外科杂志, 2021, 30(7):772-779.
[16]
强光辉, 曹胤, 张广, 等.肝癌微血管侵犯对预后的影响及基于γ-谷氨酰转肽酶-淋巴细胞比值预测评分模型的建立[J].中国临床研究,2021, 34(9):1164-1170.
[17]
田雅琪, 胡亚彬, 彭琪琪, 等.钆塞酸二钠增强MRI列线图模型预测小肝癌微血管侵犯的价值[J].磁共振成像, 2021, 12(10):57-60, 65.
[18]
王静, 征锦, 孙骏, 等.钆塞酸二钠增强MRI对肝细胞癌微血管侵犯及其分级的预测价值[J].磁共振成像, 2021(12):79-83, 88.
[19]
张泳欣, 张水兴, 肖学红, 等.基于影像学和血清学特征构建的列线图模型可较好预测原发性肝细胞癌的微血管浸润[J].分子影像学杂志, 2022, 45(4):518-525.
[20]
赵江生.肝癌合并微血管侵犯的相关因素分析及预测模型的评价与建立[D].南京: 南京医科大学, 2021.
[21]
左立平, 蒋丰洋, 周斌彬, 等.术前MRI在预测169例肝细胞肝癌微血管侵犯及早期复发的价值[J].山东大学学报(医学版), 2022,60(3):89-95, 99.
[22]
Chen J, Zhou J, Kuang S, et al.Liver imaging reporting and data system category 5: MRI predictors of microvascular invasion and recurrence after hepatectomy for hepatocellular carcinoma[J].AJR Am J Roentgenol, 2019, 213(4):821-830.
[23]
Lu XY, Zhang JY, Zhang T, et al.Using pre-operative radiomics to predict microvascular invasion of hepatocellular carcinoma based on Gd-EOB-DTPA enhanced MRI[J].BMC Med Imaging, 2022,22(1):157.
[24]
Mao S, Yu X, Yang Y, et al.Preoperative nomogram for microvascular invasion prediction based on clinical database in hepatocellular carcinoma[J].Sci Rep, 2021, 11(1):13999.
[25]
Wang H, Lu Y, Liu R, et al.A non-invasive nomogram for preoperative prediction of microvascular invasion risk in hepatocellular carcinoma[J].Front Oncol, 2021, 11:745085.
[26]
Wang L, Jin YX, Ji YZ, et al.Development and validation of a prediction model for microvascular invasion in hepatocellular carcinoma[J].World J Gastroenterol, 2020, 26(14):1647-1659.
[27]
Xu T, Ren L, Liao M, et al.Preoperative radiomics analysis of contrast-enhanced CT for microvascular invasion and prognosis stratification in hepatocellular carcinoma[J].J Hepatocell Carcinoma,2022, 9:189-201.
[28]
Yang L, Gu D, Wei J, et al.A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J].Liver Cancer, 2019, 8(5):373-386.
[29]
Yue Q, Zhou Z, Zhang X, et al.Contrast-enhanced CT findings-based model to predict MVI in patients with hepatocellular carcinoma[J].BMC Gastroenterol, 2022, 22(1):544.
[30]
Xu X, Zhang HL, Liu QP, et al.Radiomic analysis of contrastenhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J].J Hepatol, 2019, 70(6):1133-1144.
[31]
丁丁, 杨云川, 马翔, 等.术前C-反应蛋白-白蛋白-淋巴细胞比值在肝细胞癌预后中的价值评估[J/OL].中华普通外科学文献(电子版),2024, 18(4):261-265.
[32]
叶莹鹏, 杨勇, 蔡星晨, 等.单发大肝癌术后早期复发危险因素分析[J].中华普通外科杂志, 2023, 38(1):1-6.
[33]
梁志银, 陈长志, 黄韬, 等.肝细胞癌微血管侵犯术前预测列线图的建立与应用[J].中华肝胆外科杂志, 2019, 25(5):344-348.
[34]
胡光超, 张倩倩, 毛宁, 等.术前MRI预测肝细胞癌微血管侵犯研究进展[J].磁共振成像, 2022, 13(2):159-162.
[35]
Nino-Murcia M, Olcott EW, Jeffrey RB Jr, et al.Focal liver lesions:pattern-based classification scheme for enhancement at arterial phase CT[J].Radiology, 2000, 215(3):746-751.
[36]
Segal E, Sirlin CB, Ooi C, et al.Decoding global gene expression programs in liver cancer by noninvasive imaging[J].Nat Biotechnol,2007, 25(6):675-680.
[1] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[2] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[3] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[4] 吴哲境, 李敬东, 熊永福, 刘刚, 陈雷. 吲哚菁绿在解剖性肝切除术中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 25-29.
[5] 黄忠晶, 张丽东, 伍子奕, 艾军华. 不可切除肝细胞癌的转化治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 41-45.
[6] 董思帆, 安仕琪, 刘起帆, 王楚风, 蒋安. 光动力疗法在晚期胆管癌姑息性治疗中的安全性和疗效Meta 分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 68-73.
[7] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[8] 李一帆, 朱帝文, 任伟新, 鲍应军, 顾俊鹏, 张海潇, 曹耿飞, 阿斯哈尔·哈斯木, 纪卫政. 血GP73水平在原发性肝癌TACE疗效评价中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 825-830.
[9] 刘敏思, 李荣, 李媚. 基于GGT与Plt比值的模型在HBV相关肝细胞癌诊断中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 831-835.
[10] 焦振东, 惠鹏, 金上博. 三维可视化结合ICG显像技术在腹腔镜肝切除术治疗复发性肝癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 859-864.
[11] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[12] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[13] 吴警, 吐尔洪江·吐逊, 温浩. 肝切除术前肝功能评估新进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 889-893.
[14] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[15] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
阅读次数
全文


摘要