切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 14 ›› Issue (01) : 118 -125. doi: 10.3877/cma.j.issn.2095-3232.2025010

基础研究

IGF-1 介导FOXO 信号通路在大鼠ALPPS 术后肝再生中的作用
蒙柄成1,2,3, 朱海2,3, 任洪冰1,2,3, 毛伟民1,2,3, 韦德令1,2,3, 徐邦浩1,2,3, 王继龙1,2,3, 金宗睿1,2,3, 蓝祝晶1,2,3, 黄柯豫1,2,3, 卢婷婷4, 张灵5, 郭雅2,3, 文张2,3,()   
  1. 1.530021 南宁,广西医科大学
    2.530021 南宁,广西医科大学第一附属医院肝胆外科
    3.530021 南宁,广西消化道肿瘤加速康复外科基础研究重点实验室
    4.530021 南宁,广西医科大学第一附属医院超声科
    5.530021 南宁,广西医科大学第一附属医院放射科
  • 收稿日期:2024-10-22 出版日期:2025-02-10
  • 通信作者: 文张
  • 基金资助:
    国家自然科学基金地区基金项目(82160128)

Role of IGF-1-mediated FOXO signaling pathway in liver regeneration after ALPPS in rat models

Bingcheng Meng1,2,3, Hai Zhu2,3, Hongbing Ren1,2,3, Weimin Mao1,2,3, Deling Wei1,2,3, Banghao Xu1,2,3, Jilong Wang1,2,3, Zongrui Jin1,2,3, Zhujing Lan1,2,3, Keyu Huang1,2,3, Tingting Lu4, Ling Zhang5, Ya Guo2,3, Zhang Wen2,3,()   

  1. 1.Guangxi Medical University, Nanning 530021, China
    2.Department of Hepatobiliary Surgery,the First Affiliated Hospital of Guangxi Medical University, Nanning 530021,China
    3.Key Laboratory of Basic Research of Enhanced Recovery after Surgery for Digestive Tract Tumors in Guangxi Zhuang Autonomous Region, Nanning 530021, China
    4.Department of Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021,China
    5.Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021,China
  • Received:2024-10-22 Published:2025-02-10
  • Corresponding author: Zhang Wen
引用本文:

蒙柄成, 朱海, 任洪冰, 毛伟民, 韦德令, 徐邦浩, 王继龙, 金宗睿, 蓝祝晶, 黄柯豫, 卢婷婷, 张灵, 郭雅, 文张. IGF-1 介导FOXO 信号通路在大鼠ALPPS 术后肝再生中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 118-125.

Bingcheng Meng, Hai Zhu, Hongbing Ren, Weimin Mao, Deling Wei, Banghao Xu, Jilong Wang, Zongrui Jin, Zhujing Lan, Keyu Huang, Tingting Lu, Ling Zhang, Ya Guo, Zhang Wen. Role of IGF-1-mediated FOXO signaling pathway in liver regeneration after ALPPS in rat models[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 14(01): 118-125.

目的

探讨IGF-1 介导FOXO 信号通路在大鼠ALPPS 术后肝再生中作用。

方法

36 只雄性Wistar 大鼠SPF 环境中饲养,所有操作均符合实验动物伦理学要求。建立Wistar 大鼠ALPPS、门静脉结扎术(PVL)及假手术(Sham)模型。术后24、48、72 h 采用Ki-67 免疫组化染色,观察肝组织再生情况。术后72 h 的肝组织行转录组测序,并运用加权基因共表达网络分析(WGCNA)和KEGG富集分析等生物信息学方法筛选得到关键基因胰岛素样生长因子(IGF-1)。采用RT-qPCR 验证关键基因IGF-1 在大鼠肝脏的相对表达量。3 组间比较采用单因素方差分析和LSD-t 检验。

结果

免疫组化法检测显示,ALPPS 组 和PVL 组术后24、48、72 h 肝组织Ki-67 阳性细胞数逐渐增加,ALPPS 组在术后72 h 的 Ki-67 表达最高(F=927.28,P<0.05),明显高于PVL 和Sham 组(LSD-t=13.45,42.15;P<0.05)。WGCNA 分析将基因分为6 个模块,其中蓝色KMEblue 模块与ALPPS 相关性最高(r=0.69,P=0.002)。对蓝色模块(包含4 073 个基因)分析发现,IGF-1 基因在该模块内连接度最高。KEGG 富集分析揭示10 条相关通路,发现FOXO、P53 和细胞周期信号通路与肝再生密切相关,其中IGF-1 在FOXO 信号通路中的连接度最高。RT-qPCR 结果显示,与PVL 和Sham 组相比,ALPPS 组肝组织术后72 h 的IGF-1 mRNA 表达量明显升高(F=4.989,P<0.05),明显高于PVL 和Sham 组(LSD-t=2.43,2.96;P<0.05)。

结论

FOXO 信号通路中的IGF-1 可能介导大鼠ALPPS 术后肝再生过程。

Objective

To investigate the role of FOXO signaling pathway mediated by IGF-1 in liver regeneration after the associating liver partition and portal vein ligation for staged hepatectomy(ALPPS) in rat models.

Methods

36 male Wistar rats were raised in SPF-grade laboratory environment,and all procedures met the requirements of laboratory animal ethics.Wistar rat models of ALPPS (ALPPS group), portal vein ligation (PVL group) and sham surgery (Sham group) were established.The regeneration of liver tissues at postoperative 24, 48 and 72 h was observed by Ki-67 immunohistochemical staining.At postoperative 72 h, transcriptome sequencing was performed in liver tissues.The key gene of insulinlike growth factor (IGF-1) was screened by bioinformatics methods such as weighted gene co-expression network analysis (WGCNA) and KEGG enrichment analysis.The relative expression of IGF-1 in rat liver was validated by RT-qPCR.Comparison among three groups was conducted by one-way ANOVA and LSD-t test.

Results

Immunohistochemical staining showed that the number of Ki-67 positive cells in liver tissues in the ALPPS and PVL groups was gradually increased at postoperative 24, 48 and 72 h, and the expression level of Ki-67 at postoperative 72 h was the highest in the ALPPS group (F=927.28, P<0.05), significantly higher than those in the PVL and Sham groups (LSD-t=13.45, 42.15; both P<0.05).The genes were divided into six modules by WGCNA, and the blue KMEblue module showed the highest correlation with ALPPS(r=0.69, P=0.002).Analysis of the blue module (containing 4 073 genes) showed that IGF-1 gene showed the highest connectivity in this module.KEGG enrichment analysis revealed 10 related signaling pathways, and found that FOXO, P53 and cell cycle signaling pathways were intimately correlated with liver regeneration.Among them, IGF-1 showed the highest connectivity in the FOXO signaling pathway.RT-qPCR indicated that compared with the PVL and Sham groups, the expression level of IGF-1 mRNA at postoperative 72 h was significantly up-regulated in the ALPPS group (F=4.989, P<0.05), significantly higher than those in the PVL and Sham groups (LSD-t=2.43, 2.96; both P<0.05).

Conclusions

IGF-1 in the FOXO signaling pathway may mediate liver regeneration after ALPPS in rats.

图1 大鼠ALPPS 模型 注:a 为结扎门静脉右外支、左外支和左中支的总支;b 为肝实质劈离后使用凝胶海绵止血分隔;RLL 为右外侧叶,RML 为右中叶,LML 为左中叶,LLL 为左外叶,CL 为尾状叶;实心箭头为右外叶门静脉支,虚线箭头为左外叶及左中叶门静脉总支
表1 IGF-1 引物与内参引物序列
图2 三组大鼠术后肝脏Ki-67 免疫组化法检测结果 注:PVL 为门静脉结扎术,Sham 为假手术
图3 WGCNA 筛选与肝再生相关的模块与基因 注:a 为网络层次聚类,b 为最佳软阈值的选取,c 为模块基因聚类,d 为模块与肝再生的相关性热图,e 为模块与肝再生的聚类图,f 为TOM 拓扑网络图;TOM 为拓扑重叠矩阵,WGCNA 为加权基因共表达网络分析
图4 肝再生相关通路的关键模块内关键基因筛选与KEGG 富集分析 注:a 为肝再生最相关模块内基因显著性与高模块成员GS-MM 图,b 和c 为KEGG 富集分析,d 示 KEGG 富集分析基因
图5 肝再生相关通路的关键模块内关键基因筛选 注:a 为FOXO 信号通路内基因,b 为IGF-1 网络调控图;IGF-1 为胰岛素样生长因子
图6 qRT-PCR 检测三组大鼠肝脏中IGF-1 mRNA 表达水平 注:PVL 为门静脉结扎术,Sham 为假手术,IGF-1 为胰岛素样生长因子;*为P<0.05
[1]
中华人民共和国国家卫生健康委员会医政司.原发性肝癌诊疗指南(2024年版)[J/OL].中华肝脏外科手术学电子杂志,2024,13(4):407-449.
[2]
Bertuccio P, Turati F, Carioli G, et al.Global trends and predictions in hepatocellular carcinoma mortality[J].J Hepatol, 2017, 67(2):302-309.
[3]
European Association for the Study of the Liver.EASL clinical practice guidelines: management of hepatocellular carcinoma[J].J Hepatol, 2018, 69(1):182-236.
[4]
Marasco G, Alemanni LV, Colecchia A, et al.Prognostic value of the albumin-bilirubin grade for the prediction of post-hepatectomy liver failure: a systematic review and meta-analysis[J].J Clin Med, 2021,10(9):2011.
[5]
Tian YB, Niu H, Xu F, et al.ALBI score combined with FIB-4 index to predict post-hepatectomy liver failure in patients with hepatocellular carcinoma[J].Sci Rep, 2024, 14(1):8034.
[6]
Bozkurt E, Sijberden JP, Kasai, et al.Efficacy and perioperative safety of different future liver remnant modulation techniques: a systematic review and network meta-analysis[J].HPB, 2024, 26(4):465-475.
[7]
Heil J, Augath M, Kurtcuoglu V, et al.Assessment of liver function by gadoxetic acid avidity in MRI in a model of rapid liver regeneration in rats[J].HPB, 2024, 26(4):521-529.
[8]
He X, Zhang Y, Ma P, et al.Extreme hepatectomy with modified ALPPS in a rat model: gradual portal vein restriction associated with hepatic artery restriction[J].BMC Surg, 2023, 23(1):291.
[9]
Dili A, Lebrun V, Bertrand C, et al.Associating liver partition and portal vein ligation for staged hepatectomy: establishment of an animal model with insufficient liver remnant[J].Lab Invest, 2019, 99(5):698-707.
[10]
Wen Z, Jin Z, Xu B, et al.Hepatic artery restriction operation combined with ALPPS (HARO-ALPPS), a novel ALPPS procedure for the treatment of hepatocellular carcinoma with severe fibrosis: retrospective clinical cohort study[J].Int J Surg, 2024, 110(9):5662-5671.
[11]
Yin L, Wang Y, Lin Y, et al.Explorative analysis of the gene expression profile during liver regeneration of mouse: a microarray-based study[J].Artif Cells Nanomed Biotechnol, 2019, 47(1):1113-1121.
[12]
Gilgenkrantz H, de l'Hortet AC.Understanding liver regeneration:from mechanisms to regenerative medicine[J].Am J Pathol, 2018,188(6):1316-1327.
[13]
Tian F, Zhao J, Fan X, et al.Weighted gene co-expression network analysis in identification of metastasis-related genes of lung squamous cell carcinoma based on the Cancer Genome Atlas database[J].J Thorac Dis, 2017, 9(1):42-53.
[14]
Zhu Y, Li Z, Zhang J, et al.Identification of crucial lncRNAs and mRNAs in liver regeneration after portal vein ligation through weighted gene correlation network analysis[J].BMC Genomics, 2022,23(1):665.
[15]
Jin X, Meng L, Qi Z, et al.Transcriptomics and metabolomics analysis reveal the dietary copper deficiency and supplementation effects of liver gene expression and metabolite change in grazing sheep[J].BMC Genomics, 2024, 25(1):220.
[16]
Wang B, Shen H, Wei Y, et al.Balance of Gata3 and Ramp2 in hepatocytes regulates hepatic vascular reconstitution in postoperative liver regeneration[J].J Hepatol, 2024, 80(2):309-321.
[17]
Kambakamba P, Stocker D, Reiner CS, et al.Liver kinetic growth rate predicts postoperative liver failure after ALPPS[J].HPB, 2016,18(10):800-805.
[18]
闫加艳, 杨欣荣, 周俭.联合肝脏分隔和门静脉结扎的二步肝切除术临床与基础研究进展[J].中国普通外科杂志, 2023, 32(7):967-976.
[19]
Hu Y, Wang R, Liu J, et al.Lipid droplet deposition in the regenerating liver: a promoter, inhibitor, or bystander?[J].Hepatol Commun, 2023,7(10): e0267.
[20]
Ferreira M, Francisco S, Soares AR, et al.Integration of segmented regression analysis with weighted gene correlation network analysis identifies genes whose expression is remodeled throughout physiological aging in mouse tissues[J].Aging, 2021, 13(14):18150-18190.
[21]
Zhou Y, Xu J, Liu Y, et al.Rat hepatocytes weighted gene co-expression network analysis identifies specific modules and hub genes related to liver regeneration after partial hepatectomy[J].PLoS One, 2014, 9(4):e94868.
[22]
Li X, Zhou H, Ma R, et al.Structure of POU2AF1 recombinant protein and it affects the progression and treatment of liver cancer based on WGCNA and molecular docking analysis[J].Int J Biol Macromol,2024, 278(Pt 1):134629.Lee WS, Abel ED, Kim J.New insights into IGF-1 signaling in the heart[J].Physiology, 2024, 39(5):0.
[23]
Arum O, Boparai RK, Saleh JK, et al.Specific suppression of insulin sensitivity in growth hormone receptor gene-disrupted (GHR-KO)mice attenuates phenotypic features of slow aging[J].Aging Cell,2014, 13(6):981-1000.
[24]
Lee WS, Kim J.Insulin-like growth factor-1 signaling in cardiac aging[J].Biochim Biophys Acta Mol Basis Dis, 2018, 1864(5 Pt B):1931-1938.
[25]
Ock S, Lee WS, Ahn J, et al.Deletion of IGF-1 receptors in cardiomyocytes attenuates cardiac aging in male mice[J].Endocrinology,2016, 157(1):336-345.
[26]
Frago LM, Burgos-Ramos E, Rodríguez-Pérez M, et al.Reduction in hippocampal amyloid-β peptide (aβ) content during glycine-prolineglutamate (gly-pro-glu) co-administration is associated with changes in inflammation and insulin-like growth factor (IGF)-Ⅰ signaling[J].Int J Mol Sci, 2024, 25(11):5716.
[27]
Qin W, Yang L, Chen X, et al.Wedelolactone promotes the chondrogenic differentiation of mesenchymal stem cells by suppressing EZH2[J].Int J Stem Cells, 2023, 16(3):326-341.
[28]
Bellanti F, Vendemiale G.The aging liver: redox biology and liver regeneration[J].Antioxid Redox Signal, 2021, 35(10):832-847.
[29]
Tian S, Zhong K, Yang Z, et al.Investigating the mechanism of tricyclic decyl benzoxazole-induced apoptosis in liver Cancer cells through p300-mediated FOXO3 activation[J].Cell Signal, 2024,121:111280.
[30]
Li Y, Sun Y, Wang J, et al.Voacangine protects hippocampal neuronal cells against oxygen-glucose deprivation/reoxygenation-caused oxidative stress and ferroptosis by activating the PI3K-Akt-FoxO signaling[J].J Appl Toxicol, 2024, 44(8):1246-1256.
[31]
Nijenhuis-Noort EC, Berk KA, Neggers SJCMM, et al.The fascinating interplay between growth hormone, insulin-like growth factor-1, and insulin[J].Endocrinol Metab, 2024, 39(1):83-89.
[32]
Xiong JL, Wang YX, Luo JY, et al.Pituitary-derived small extracellular vesicles promote liver repair by its cargo miR-143-3p[J].Sci Rep, 2024, 14(1):16635.
[1] 钟锴, 蒋铁民, 张瑞青, 吐尔干艾力·阿吉, 邵英梅, 郭强. 加速康复外科在肝囊型棘球蚴病肝切除术中的应用分析[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 425-429.
[2] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[3] 冯旺, 马振中, 汤林花. CT扫描三维重建在肝内胆管细胞癌腹腔镜肝切除术中的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 104-107.
[4] 赖全友, 高远, 汪建林, 屈士斌, 魏丹, 彭伟. 三维重建技术结合腹腔镜精准肝切除术对肝癌患者术后CD4+、CD8+及免疫球蛋白水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 651-654.
[5] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[6] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[7] 李家军, 万思乐, 陆朝阳. 肝中心型肿瘤切除术后胆漏临床分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 87-91.
[8] 李伟男, 杨刚, 熊永福, 李强, 李敬东. 中晚期肝癌TACE 联合靶向免疫转化治疗后成功实施ALPPS 的初步经验[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 97-101.
[9] 于毅, 谢敖文, 刘俊, 王攀, 何德剑, 彭欣然, 何章勇, 何玉成, 李琼, 李洪涛, 王国彦, 周建, 刘升辉, 王永军, 赵春博, 段清垚. 以指捏法切肝为核心技术的全流程管理在严重肝外伤中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 107-112.
[10] 吴哲境, 李敬东, 熊永福, 刘刚, 陈雷. 吲哚菁绿在解剖性肝切除术中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 25-29.
[11] 马子慧, 郭卫星. 腹腔镜肝尾状叶切除术的临床应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 36-40.
[12] 杭轶, 杨小勇, 李文美, 薛磊. 可控性低中心静脉压技术在肝切除术中应用的最适中心静脉压[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 813-817.
[13] 焦振东, 惠鹏, 金上博. 三维可视化结合ICG显像技术在腹腔镜肝切除术治疗复发性肝癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 859-864.
[14] 吴警, 吐尔洪江·吐逊, 温浩. 肝切除术前肝功能评估新进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 889-893.
[15] 吴雪云, 胡小军, 范应方. 肝切除术中剩余肝再生能力的评估与预测[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 894-897.
阅读次数
全文


摘要