| [1] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
|
| [2] |
Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States[J]. Cancer Res, 2014, 74(11): 2913-2921. DOI: 10.1158/0008-5472.CAN-14-0155.
|
| [3] |
Neuzillet C, Tijeras-Raballand A, Ragulan C, et al. Inter-and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma[J]. J Pathol, 2019, 248(1): 51-65. DOI: 10.1002/path.5224.
|
| [4] |
Epshtein A, Sakhneny L, Landsman L. Isolating and analyzing cells of the pancreas mesenchyme by flow cytometry[J]. J Vis Exp, 2017(119): 55344. DOI: 10.3791/55344.
|
| [5] |
Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019, 9(8): 1102-1123. DOI: 10.1158/2159-8290.CD-19-0094.
|
| [6] |
Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts[J]. Physiol Rev, 2021, 101(1): 147-176. DOI: 10.1152/physrev.00048.2019.
|
| [7] |
|
| [8] |
|
| [9] |
Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017, 214(3): 579-596. DOI: 10.1084/jem.20162024.
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(8): 487-505. DOI: 10.1038/s41575-020-0300-1.
|
| [15] |
|
| [16] |
|
| [17] |
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
|
| [18] |
Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer, 2020, 20(3): 174-186. DOI: 10.1038/s41568-019-0238-1.
|
| [19] |
Denton AE, Roberts EW, Fearon DT. Stromal cells in the tumor microenvironment[J]. Adv Exp Med Biol, 2018, 1060: 99-114. DOI: 10.1007/978-3-319-78127-3_6.
|
| [20] |
Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer[J]. Cancer Cell, 2018, 33(3): 463-479. e10. DOI: 10.1016/j.ccell.2018.01.011.
|
| [21] |
Calvo F, Ege N, Grande-Garcia A, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts[J]. Nat Cell Biol, 2013, 15(6): 637-646. DOI: 10.1038/ncb2756.
|
| [22] |
Erdogan B, Ao M, White LM, et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin[J]. J Cell Biol, 2017, 216(11): 3799-3816. DOI: 10.1083/jcb.201704053.
|
| [23] |
Davidson S, Efremova M, Riedel A, et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth[J]. Cell Rep, 2020, 31(7): 107628. DOI: 10.1016/j.celrep. 2020.107628.
|
| [24] |
Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair[J]. Nature, 2013, 504(7479): 277-281. DOI: 10.1038/nature12783.
|
| [25] |
Philippeos C, Telerman SB, Oulès B, et al. Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations[J]. J Invest Dermatol, 2018, 138(4): 811-825. DOI: 10.1016/j.jid.2018.01.016.
|
| [26] |
Buechler MB, Pradhan RN, Krishnamurty AT, et al. Cross-tissue organization of the fibroblast lineage[J]. Nature, 2021, 593: 575-579. DOI: 10.1038/s41586-021-03549-5.
|
| [27] |
Hinz B, Phan SH, Thannickal VJ, et al. The myofibroblast: one function, multiple origins[J]. Am J Pathol, 2007, 170(6): 1807-1816. DOI: 10.2353/ajpath.2007.070112.
|
| [28] |
Pakshir P, Noskovicova N, Lodyga M, et al. The myofibroblast at a glance[J]. J Cell Sci, 2020, 133(13): jcs227900. DOI: 10.1242/jcs.227900.
|
| [29] |
Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166. DOI: 10.1038/s41575-020-00372-7.
|
| [30] |
Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines[J]. Nature, 2020, 587(7835): 555-566. DOI: 10.1038/s41586-020-2938-9.
|
| [31] |
Erkan M, Adler G, Apte MV, et al. StellaTUM: current consensus and discussion on pancreatic stellate cell research[J]. Gut, 2012, 61(2): 172-178. DOI: 10.1136/gutjnl-2011-301220.
|
| [32] |
Ivarsson M, McWhirter A, Borg TK, et al. Type I collagen synthesis in cultured human fibroblasts: regulation by cell spreading, platelet-derived growth factor and interactions with collagen fibers[J]. Matrix Biol, 1998, 16(7): 409-425. DOI: 10.1016/s0945-053x(98)90014-2.
|
| [33] |
Dominguez CX, Müller S, Keerthivasan S, et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15 + myofibroblasts as a determinant of patient response to cancer immunotherapy[J]. Cancer Discov, 2020, 10(2): 232-253.DOI: 10.1158/2159-8290.CD-19-0644.
|
| [34] |
Özdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival[J]. Cancer Cell, 2014, 25(6): 719-734. DOI: 10.1016/j.ccr.2014.04.005.
|
| [35] |
|
| [36] |
赵立新. miR-21对胰腺导管腺癌细胞增殖、凋亡和侵袭的影响及相关机制的研究[D]. 武汉: 武汉大学, 2016.
|
| [37] |
Sousa CM, Biancur DE, Wang X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion[J]. Nature, 2016, 536(7617): 479-483. DOI: 10.1038/nature19084.
|
| [38] |
|
| [39] |
Apte MV, Xu Z, Pothula S, et al. Pancreatic cancer: the microenvironment needs attention too![J]. Pancreatology, 2015, 15(4 Suppl): S32-S38. DOI: 10.1016/j.pan.2015.02.013.
|
| [40] |
Geng X, Chen H, Zhao L, et al. Cancer-associated fibroblast (CAF) heterogeneity and targeting therapy of CAFs in pancreatic cancer[J]. Front Cell Dev Biol, 2021, 9: 655152. DOI: 10.3389/fcell.2021.655152.
|
| [41] |
Whatcott CJ, Diep CH, Jiang P, et al. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer[J]. Clin Cancer Res, 2015, 21(15): 3561-3568. DOI: 10.1158/1078-0432.CCR-14-1051.
|
| [42] |
Chang YT, Peng HY, Hu CM, et al. Pancreatic cancer-derived small extracellular vesical ezrin activates fibroblasts to exacerbate cancer metastasis through STAT3 and YAP-1 signaling pathways[J]. Mol Oncol, 2023, 17(8): 1628-1647. DOI: 10.1002/1878-0261.13442.
|
| [43] |
Laklai H, Miroshnikova YA, Pickup MW, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression[J]. Nat Med, 2016, 22(5): 497-505. DOI: 10.1038/nm.4082.
|
| [44] |
|
| [45] |
Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver[J]. Nat Cell Biol, 2015, 17(6): 816-826. DOI: 10.1038/ncb3169.
|
| [46] |
Takesue S, Ohuchida K, Shinkawa T, et al. Neutrophil extracellular traps promote liver micrometastasis in pancreatic ductal adenocarcinoma via the activation of cancer-associated fibroblasts[J]. Int J Oncol, 2020, 56(2): 596-605. DOI: 10.3892/ijo.2019.4951.
|
| [47] |
Hutton C, Heider F, Blanco-Gomez A, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity[J]. Cancer Cell, 2021, 39(9): 1227-1244. e20. DOI: 10.1016/j.ccell.2021.06.017.
|
| [48] |
Mace TA, Shakya R, Pitarresi JR, et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer[J]. Gut, 2018, 67(2): 320-332. DOI: 10.1136/gutjnl-2016-311585.
|
| [49] |
Pietras K, Pahler J, Bergers G, et al. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting[J]. PLoS Med, 2008, 5(1): e19. DOI: 10.1371/journal.pmed.0050019.
|
| [50] |
Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell, 2007, 1(3): 313-323. DOI: 10.1016/j.stem.2007.06.002.
|
| [51] |
Rhim AD, Mirek ET, Aiello NM, et al. EMT and dissemination precede pancreatic tumor formation[J]. Cell, 2012, 148(1-2): 349-361. DOI: 10.1016/j.cell.2011.11.025.
|
| [52] |
Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci USA, 2013, 110(50): 20212-20217. DOI: 10.1073/pnas.1320318110.
|
| [53] |
Steele NG, Biffi G, Kemp SB, et al. Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer[J]. Clin Cancer Res, 2021, 27(7): 2023-2037. DOI: 10.1158/1078-0432.CCR-20-3715.
|
| [54] |
Demoulin S, Herfs M, Delvenne P, et al. Tumor microenvironment converts plasmacytoid dendritic cells into immunosuppressive/tolerogenic cells: insight into the molecular mechanisms[J]. J Leukoc Biol, 2013, 93(3): 343-352. DOI: 10.1189/jlb.0812397.
|
| [55] |
|
| [56] |
Pasquier J, Guerrouahen BS, Al Thawadi H, et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance[J]. J Transl Med, 2013, 11: 94. DOI: 10.1186/1479-5876-11-94.
|
| [57] |
Heldin CH, Rubin K, Pietras K, et al. High interstitial fluid pressure—an obstacle in cancer therapy[J]. Nat Rev Cancer, 2004, 4: 806-813. DOI: 10.1038/nrc1456.
|
| [58] |
Saloman JL, Albers KM, Li D, et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer[J]. Proc Natl Acad Sci USA, 2016, 113(11): 3078-3083. DOI: 10.1073/pnas.1512603113.
|
| [59] |
Pallasch FB, Schumacher U. Angiotensin inhibition, TGF-β and EMT in cancer[J]. Cancers, 2020, 12(10): 2785. DOI: 10.3390/cancers12102785.
|
| [60] |
Jiang B, Zhou L, Lu J, et al. Stroma-targeting therapy in pancreatic cancer: one coin with two sides?[J]. Front Oncol, 2020, 10: 576399.DOI: 10.3389/fonc.2020.576399.
|
| [61] |
Yu L, Liu Q, Huo J, et al. Cancer-associated fibroblasts induce immunotherapy resistance in hepatocellular carcinoma animal model[J]. Cell Mol Biol, 2020, 66(2): 36-40.
|
| [62] |
Francescone R, Scully S, Bentley B, et al. Glioblastoma-derived tumor cells induce vasculogenic mimicry through Flk-1 protein activation[J]. J Biol Chem, 2012, 287(29): 24821-24831. DOI: 10.1074/jbc.M111.334540.
|
| [63] |
Koikawa K, Ohuchida K, Ando Y, et al. Basement membrane destruction by pancreatic stellate cells leads to local invasion in pancreatic ductal adenocarcinoma[J]. Cancer Lett, 2018, 425: 65-77. DOI: 10.1016/j.canlet.2018.03.031.
|
| [64] |
|
| [65] |
Malandrino A, Mak M, Kamm RD, et al. Complex mechanics of the heterogeneous extracellular matrix in cancer[J]. Extreme Mech Lett, 2018, 21: 25-34. DOI: 10.1016/j.eml.2018.02.003.
|
| [66] |
Tian C, Clauser KR, Öhlund D, et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells[J]. Proc Natl Acad Sci USA, 2019, 116(39): 19609-19618. DOI: 10.1073/pnas.1908626116.
|
| [67] |
Steele CW, Karim SA, Leach JDG, et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2016, 29(6): 832-845. DOI: 10.1016/j.ccell.2016.04.014.
|
| [68] |
Hamano Y, Zeisberg M, Sugimoto H, et al. Physiological levels of tumstatin, a fragment of collagen Ⅳ alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin[J]. Cancer Cell, 2003, 3(6): 589-601. DOI: 10.1016/s1535-6108(03)00133-8.
|
| [69] |
吴江为, 张巧玲, 王选银, 等. CD248+CAFs激活Hippo通路介导细胞外基质重塑促进NSCLC转移的机制研究[J]. 医用生物力学, 2024, 39(S1): 124.
|
| [70] |
|
| [71] |
邓浩强. 黑色素瘤小细胞外囊泡调控癌相关成纤维细胞促血管生成表型的分子机制研究& 病例报告[D]. 武汉: 武汉大学, 2022.
|
| [72] |
Nywening TM, Belt BA, Cullinan DR, et al. Targeting both tumour-associated CXCR2 + neutrophils and CCR2 + macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma[J]. Gut, 2018, 67(6): 1112-1123. DOI: 10.1136/gutjnl-2017-313738.
|
| [73] |
Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry[J]. Am J Pathol, 1999, 155(3): 739-752. DOI: 10.1016/S0002-9440(10)65173-5.
|
| [74] |
彭琼乐, 孙艳, 赵浏阳, 等. 癌相关成纤维细胞在肿瘤发生发展中的作用[J]. 生物医学工程学杂志, 2013, 30(1): 200-203.
|
| [75] |
Farhangnia P, Khorramdelazad H, Nickho H, et al. Current and future immunotherapeutic approaches in pancreatic cancer treatment[J]. J Hematol Oncol, 2024, 17(1): 40. DOI: 10.1186/s13045-024-01561-6.
|
| [76] |
Liu T, Han C, Wang S, et al. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy[J]. J Hematol Oncol, 2019, 12(1): 86. DOI: 10.1186/s13045-019-0770-1.
|
| [77] |
Gorchs L, Kaipe H. Interactions between cancer-associated fibroblasts and T cells in the pancreatic tumor microenvironment and the role of chemokines[J]. Cancers, 2021, 13(12): 2995. DOI: 10.3390/cancers13122995.
|
| [78] |
Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer, 2021, 20(1): 131. DOI: 10.1186/s12943-021-01428-1.
|
| [79] |
Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2, 3-dioxygenase[J]. Immunity, 2005, 22(5): 633-642. DOI: 10.1016/j.immuni.2005.03.013.
|
| [80] |
Åkerfelt M, Bayramoglu N, Robinson S, et al. Automated tracking of tumor-stroma morphology in microtissues identifies functional targets within the tumor microenvironment for therapeutic intervention[J]. Oncotarget, 2015, 6(30): 30035-30056. DOI: 10.18632/oncotarget.5046.
|
| [81] |
Coursier D, Calvo F. CAFs vs. TECs: when blood feuds fuel cancer progression, dissemination and therapeutic resistance[J]. Cell Oncol, 2024, 47(4): 1091-1112. DOI: 10.1007/s13402-024-00931-z.
|
| [82] |
|
| [83] |
Lee H, Hwang M, Jang S, et al. Immune regulatory function of cancer-associated fibroblasts in non-small cell lung cancer[J]. Tuberc Respir Dis, 2023, 86(4): 304-318. DOI: 10.4046/trd.2022.0129.
|
| [84] |
Fitzgerald AA, Wang S, Agarwal V, et al. DPP inhibition alters the CXCR3 axis and enhances NK and CD8 + T cell infiltration to improve anti-PD1 efficacy in murine models of pancreatic ductal adenocarcinoma[J]. J Immunother Cancer, 2021, 9(11): e002837. DOI: 10.1136/jitc-2021-002837.
|
| [85] |
Zielińska KA, Katanaev VL. The signaling duo CXCL12 and CXCR4: chemokine fuel for breast cancer tumorigenesis[J]. Cancers, 2020, 12(10): 3071. DOI: 10.3390/cancers12103071.
|
| [86] |
Bordry N, Broggi MAS, de Jonge K, et al. Lymphatic vessel density is associated with CD8 + T cell infiltration and immunosuppressive factors in human melanoma[J]. Oncoimmunology, 2018, 7(8): e1462878. DOI: 10.1080/2162402X.2018.1462878.
|
| [87] |
Harmon C, O'Farrelly C, Robinson MW. The immune consequences of lactate in the tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1259: 113-124. DOI: 10.1007/978-3-030-43093-1_7.
|
| [88] |
Sun X, Cai W, Li H, et al. Endothelial-like cancer-associated fibroblasts facilitate pancreatic cancer metastasis via vasculogenic mimicry and paracrine signalling[J]. Gut, 2025, 74(9): 1437-1451. DOI: 10.1136/gutjnl-2024-333638.
|