切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 15 ›› Issue (01) : 124 -131. doi: 10.3877/cma.j.issn.2095-3232.2026.01.020

综述

肿瘤相关成纤维细胞在胰腺导管腺癌中的研究进展
刘铁鑫, 王震侠()   
  1. 010010 呼和浩特,内蒙古医科大学附属医院肝胆胰脾外科A区
  • 收稿日期:2025-07-12 出版日期:2025-02-10
  • 通信作者: 王震侠
  • 基金资助:
    内蒙古自治区自然科学基金项目(2023LHMS08061); 内蒙古自治区公立医院科研联合基金科技项目(2024GLLH0301)

Research progress in cancer-associated fibroblasts in pancreatic ductal adenocarcinoma

Tiexin Liu, Zhenxia Wang()   

  1. Section A of Department of Hepatobiliary, Pancreatic and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010010, China
  • Received:2025-07-12 Published:2025-02-10
  • Corresponding author: Zhenxia Wang
引用本文:

刘铁鑫, 王震侠. 肿瘤相关成纤维细胞在胰腺导管腺癌中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 15(01): 124-131.

Tiexin Liu, Zhenxia Wang. Research progress in cancer-associated fibroblasts in pancreatic ductal adenocarcinoma[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 15(01): 124-131.

胰腺导管腺癌(PDAC)是一种恶性程度极高且预后极差的消化道肿瘤,当前研究主要围绕其核心驱动基因突变(如KRAS/TP53)、以肿瘤相关成纤维细胞(CAFs)异常活化和免疫抑制为特征的致密纤维化微环境,以及化疗抵抗机制展开,前沿探索方向涵盖靶向治疗(如KRAS抑制剂)、免疫微环境调控、代谢通路干预及早期诊断标志物筛选。该文系统解析CAFs的生物学特性,涵盖其细胞起源、功能表型分类及分子异质性特征,并从调控恶性生物学行为、构建动态微环境网络、介导血管生成及免疫抑制等维度,全面阐述CAFs在PDAC进展中的核心作用。基于空间转录组与多重免疫荧光技术开发、表观遗传调控机制解析及联合治疗方案优化的研究路径,旨在为PDAC精准治疗提供新思路,改善患者预后。

Pancreatic ductal adenocarcinoma (PDAC) is a type of digestive tract carcinoma with extremely high degree of malignancy and poor prognosis. At present, relevant research mainly focuses on the core driver gene mutation (such as KRAS/TP53), dense fibrotic microenvironment characterized by abnormal activation and immunosuppression of cancer-associated fibroblasts (CAFs), and the mechanism of chemotherapy resistance. The frontier exploration directions cover targeted therapy (such as KRAS inhibitors), immune microenvironment regulation, metabolic pathway intervention and screening of early diagnostic biomarkers. In this article, biological characteristics of CAFs were illustrated, including cell origin, functional phenotype classification and molecular heterogeneity. The key role of CAFs in the progression of PDAC was unraveled from the perspectives of regulating malignant biological behavior, constructing dynamic microenvironment network and mediating angiogenesis and immunosuppression, etc. Based on the development of spatial transcriptome and multiplex immunofluorescence imaging, analysis of epigenetic regulation mechanism and optimization of combined treatment regimens, this study was designed to provide novel ideas for precise treatment and improve clinical prognosis of PDAC patients.

图1 PDAC微环境中CAFs发挥核心调控功能示意图 注:PDAC为胰腺导管腺癌,CAFs为肿瘤相关成纤维细胞,ECM为细胞外基质,Tregs为调节性T细胞,TAMs为肿瘤相关性巨噬细胞
[1]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
[2]
Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States[J]. Cancer Res, 2014, 74(11): 2913-2921. DOI: 10.1158/0008-5472.CAN-14-0155.
[3]
Neuzillet C, Tijeras-Raballand A, Ragulan C, et al. Inter-and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma[J]. J Pathol, 2019, 248(1): 51-65. DOI: 10.1002/path.5224.
[4]
Epshtein A, Sakhneny L, Landsman L. Isolating and analyzing cells of the pancreas mesenchyme by flow cytometry[J]. J Vis Exp, 2017(119): 55344. DOI: 10.3791/55344.
[5]
Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019, 9(8): 1102-1123. DOI: 10.1158/2159-8290.CD-19-0094.
[6]
Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts[J]. Physiol Rev, 2021, 101(1): 147-176. DOI: 10.1152/physrev.00048.2019.
[7]
袁静, 孙爱群, 许发美, 等. 胰腺导管腺癌中PD-L1的表达及其与临床病理特征的关系[J]. 胃肠病学和肝病学杂志, 2021, 30(07): 763-766. DOI: 10.3969/j.issn.1006-5709.2021.07.009.
[8]
赵琦, 莫日根, 范丽菲. 肿瘤相关成纤维细胞的形成及其在肿瘤发生与发展中的作用[J]. 中国生物化学与分子生物学报, 2021, 37(8): 1005-1009. DOI: 10.3969/j.issn.1006-5709.2021.07.009.
[9]
Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017, 214(3): 579-596. DOI: 10.1084/jem.20162024.
[10]
陈大理, 车国卫. 癌相关成纤维细胞表型转换的遗传学与表观遗传学机制研究现状[J]. 中国肺癌杂志, 2015, 18(2): 117-122. DOI: 10.3969/j.issn.1006-5709.2021.07.009.
[11]
汪玉倩, 徐可, 詹月萍, 等. 肿瘤相关成纤维细胞及其标记物的研究现状[J]. 中国临床药理学杂志, 2022, 38(17): 2094-2097. DOI: 10.13699/j.cnki.1001-6821.2022.17.024.
[12]
曾瑞琪, 何卫阳, 曾铁兵, 等. 肿瘤相关成纤维细胞的促瘤作用及其靶向治疗研究进展[J]. 现代肿瘤医学, 2024, 32(16): 3156-3160. DOI: 10.3969/j.issn.1672-4992.2024.16.034.
[13]
周红, 刘永刚, 张海博, 等. 肿瘤相关成纤维细胞在肝细胞癌中的作用及机制[J]. 胃肠病学和肝病学杂志, 2023, 32(11): 1304-1310. DOI: 10.3969/j.issn.1006-5709.2023.11.021.
[14]
Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(8): 487-505. DOI: 10.1038/s41575-020-0300-1.
[15]
许君怡, 郁菲儿, 牛宁宁, 等. 胰腺肿瘤相关成纤维细胞的研究进展[J]. 生命的化学, 2023, 43(7): 1143-1157. DOI: 10.13488/j.smhx.20230453.
[16]
杨梦迪, 王智煜, 赵晖. 肿瘤相关成纤维细胞对肿瘤微环境及肿瘤免疫代谢影响的研究进展[J]. 癌症进展, 2018, 16(3): 268-271. DOI: 10.11877/j.issn.1672-1535.2018.16.03.02.
[17]
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
[18]
Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer, 2020, 20(3): 174-186. DOI: 10.1038/s41568-019-0238-1.
[19]
Denton AE, Roberts EW, Fearon DT. Stromal cells in the tumor microenvironment[J]. Adv Exp Med Biol, 2018, 1060: 99-114. DOI: 10.1007/978-3-319-78127-3_6.
[20]
Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer[J]. Cancer Cell, 2018, 33(3): 463-479. e10. DOI: 10.1016/j.ccell.2018.01.011.
[21]
Calvo F, Ege N, Grande-Garcia A, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts[J]. Nat Cell Biol, 2013, 15(6): 637-646. DOI: 10.1038/ncb2756.
[22]
Erdogan B, Ao M, White LM, et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin[J]. J Cell Biol, 2017, 216(11): 3799-3816. DOI: 10.1083/jcb.201704053.
[23]
Davidson S, Efremova M, Riedel A, et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth[J]. Cell Rep, 2020, 31(7): 107628. DOI: 10.1016/j.celrep. 2020.107628.
[24]
Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair[J]. Nature, 2013, 504(7479): 277-281. DOI: 10.1038/nature12783.
[25]
Philippeos C, Telerman SB, Oulès B, et al. Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations[J]. J Invest Dermatol, 2018, 138(4): 811-825. DOI: 10.1016/j.jid.2018.01.016.
[26]
Buechler MB, Pradhan RN, Krishnamurty AT, et al. Cross-tissue organization of the fibroblast lineage[J]. Nature, 2021, 593: 575-579. DOI: 10.1038/s41586-021-03549-5.
[27]
Hinz B, Phan SH, Thannickal VJ, et al. The myofibroblast: one function, multiple origins[J]. Am J Pathol, 2007, 170(6): 1807-1816. DOI: 10.2353/ajpath.2007.070112.
[28]
Pakshir P, Noskovicova N, Lodyga M, et al. The myofibroblast at a glance[J]. J Cell Sci, 2020, 133(13): jcs227900. DOI: 10.1242/jcs.227900.
[29]
Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166. DOI: 10.1038/s41575-020-00372-7.
[30]
Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines[J]. Nature, 2020, 587(7835): 555-566. DOI: 10.1038/s41586-020-2938-9.
[31]
Erkan M, Adler G, Apte MV, et al. StellaTUM: current consensus and discussion on pancreatic stellate cell research[J]. Gut, 2012, 61(2): 172-178. DOI: 10.1136/gutjnl-2011-301220.
[32]
Ivarsson M, McWhirter A, Borg TK, et al. Type I collagen synthesis in cultured human fibroblasts: regulation by cell spreading, platelet-derived growth factor and interactions with collagen fibers[J]. Matrix Biol, 1998, 16(7): 409-425. DOI: 10.1016/s0945-053x(98)90014-2.
[33]
Dominguez CX, Müller S, Keerthivasan S, et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy[J]. Cancer Discov, 2020, 10(2): 232-253.DOI: 10.1158/2159-8290.CD-19-0644.
[34]
Özdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival[J]. Cancer Cell, 2014, 25(6): 719-734. DOI: 10.1016/j.ccr.2014.04.005.
[35]
孟强, 张雷. 肿瘤相关成纤维细胞与胰腺导管腺癌关系的研究进展[J]. 中华实用诊断与治疗杂志, 2019, 33(1): 89-91. DOI: 10.13507/j.issn.1674-3474.2019.01.028.
[36]
赵立新. miR-21对胰腺导管腺癌细胞增殖、凋亡和侵袭的影响及相关机制的研究[D]. 武汉: 武汉大学, 2016.
[37]
Sousa CM, Biancur DE, Wang X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion[J]. Nature, 2016, 536(7617): 479-483. DOI: 10.1038/nature19084.
[38]
王伟, 满晓华, 郑建明, 等. Wnt5a在胰腺癌及癌前病变中的表达差异分析[J]. 第二军医大学学报, 2012, 33(3): 265-269. DOI: 10.3724/SP.J.1008.2012.00265.
[39]
Apte MV, Xu Z, Pothula S, et al. Pancreatic cancer: the microenvironment needs attention too![J]. Pancreatology, 2015, 15(4 Suppl): S32-S38. DOI: 10.1016/j.pan.2015.02.013.
[40]
Geng X, Chen H, Zhao L, et al. Cancer-associated fibroblast (CAF) heterogeneity and targeting therapy of CAFs in pancreatic cancer[J]. Front Cell Dev Biol, 2021, 9: 655152. DOI: 10.3389/fcell.2021.655152.
[41]
Whatcott CJ, Diep CH, Jiang P, et al. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer[J]. Clin Cancer Res, 2015, 21(15): 3561-3568. DOI: 10.1158/1078-0432.CCR-14-1051.
[42]
Chang YT, Peng HY, Hu CM, et al. Pancreatic cancer-derived small extracellular vesical ezrin activates fibroblasts to exacerbate cancer metastasis through STAT3 and YAP-1 signaling pathways[J]. Mol Oncol, 2023, 17(8): 1628-1647. DOI: 10.1002/1878-0261.13442.
[43]
Laklai H, Miroshnikova YA, Pickup MW, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression[J]. Nat Med, 2016, 22(5): 497-505. DOI: 10.1038/nm.4082.
[44]
王永红, 张弘扬, 王震侠, 等. 胰腺癌相关成纤维细胞的研究进展[J]. 重庆医学, 2022, 51(11): 1968-1972. DOI: 10.3969/j.issn.1671-8348.2022.11.033.
[45]
Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver[J]. Nat Cell Biol, 2015, 17(6): 816-826. DOI: 10.1038/ncb3169.
[46]
Takesue S, Ohuchida K, Shinkawa T, et al. Neutrophil extracellular traps promote liver micrometastasis in pancreatic ductal adenocarcinoma via the activation of cancer-associated fibroblasts[J].Int J Oncol, 2020, 56(2): 596-605. DOI: 10.3892/ijo.2019.4951.
[47]
Hutton C, Heider F, Blanco-Gomez A, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity[J]. Cancer Cell, 2021, 39(9): 1227-1244. e20. DOI: 10.1016/j.ccell.2021.06.017.
[48]
Mace TA, Shakya R, Pitarresi JR, et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer[J]. Gut, 2018, 67(2): 320-332. DOI: 10.1136/gutjnl-2016-311585.
[49]
Pietras K, Pahler J, Bergers G, et al. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting[J]. PLoS Med, 2008, 5(1): e19. DOI: 10.1371/journal.pmed.0050019.
[50]
Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell, 2007, 1(3): 313-323. DOI: 10.1016/j.stem.2007.06.002.
[51]
Rhim AD, Mirek ET, Aiello NM, et al. EMT and dissemination precede pancreatic tumor formation[J]. Cell, 2012, 148(1-2): 349-361. DOI: 10.1016/j.cell.2011.11.025.
[52]
Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci USA, 2013, 110(50): 20212-20217. DOI: 10.1073/pnas.1320318110.
[53]
Steele NG, Biffi G, Kemp SB, et al. Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer[J]. Clin Cancer Res, 2021, 27(7): 2023-2037. DOI: 10.1158/1078-0432.CCR-20-3715.
[54]
Demoulin S, Herfs M, Delvenne P, et al. Tumor microenvironment converts plasmacytoid dendritic cells into immunosuppressive/tolerogenic cells: insight into the molecular mechanisms[J]. J Leukoc Biol, 2013, 93(3): 343-352. DOI: 10.1189/jlb.0812397.
[55]
翟永祥, 王震侠. 胰腺星状细胞在胰腺导管腺癌肿瘤微环境中的作用研究进展[J]. 肝胆胰外科杂志, 2024, 36(1): 55-58, 64. DOI: CNKI: SUN: GDYW.0.2024-01-012.
[56]
Pasquier J, Guerrouahen BS, Al Thawadi H, et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance[J]. J Transl Med, 2013, 11: 94. DOI: 10.1186/1479-5876-11-94.
[57]
Heldin CH, Rubin K, Pietras K, et al. High interstitial fluid pressure—an obstacle in cancer therapy[J]. Nat Rev Cancer, 2004, 4: 806-813. DOI: 10.1038/nrc1456.
[58]
Saloman JL, Albers KM, Li D, et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer[J]. Proc Natl Acad Sci USA, 2016, 113(11): 3078-3083. DOI: 10.1073/pnas.1512603113.
[59]
Pallasch FB, Schumacher U. Angiotensin inhibition, TGF-β and EMT in cancer[J]. Cancers, 2020, 12(10): 2785. DOI: 10.3390/cancers12102785.
[60]
Jiang B, Zhou L, Lu J, et al. Stroma-targeting therapy in pancreatic cancer: one coin with two sides?[J]. Front Oncol, 2020, 10: 576399.DOI: 10.3389/fonc.2020.576399.
[61]
Yu L, Liu Q, Huo J, et al. Cancer-associated fibroblasts induce immunotherapy resistance in hepatocellular carcinoma animal model[J]. Cell Mol Biol, 2020, 66(2): 36-40.
[62]
Francescone R, Scully S, Bentley B, et al. Glioblastoma-derived tumor cells induce vasculogenic mimicry through Flk-1 protein activation[J]. J Biol Chem, 2012, 287(29): 24821-24831. DOI: 10.1074/jbc.M111.334540.
[63]
Koikawa K, Ohuchida K, Ando Y, et al. Basement membrane destruction by pancreatic stellate cells leads to local invasion in pancreatic ductal adenocarcinoma[J]. Cancer Lett, 2018, 425: 65-77. DOI: 10.1016/j.canlet.2018.03.031.
[64]
李学勤, 徐克. 肿瘤相关成纤维细胞促进肿瘤侵袭转移的作用机制[J]. 中国生物化学与分子生物学报, 2019, 35(4): 386-392. DOI: 10.13865/j.cnki.cjbmb.2019.04.06.
[65]
Malandrino A, Mak M, Kamm RD, et al. Complex mechanics of the heterogeneous extracellular matrix in cancer[J]. Extreme Mech Lett, 2018, 21: 25-34. DOI: 10.1016/j.eml.2018.02.003.
[66]
Tian C, Clauser KR, Öhlund D, et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells[J]. Proc Natl Acad Sci USA, 2019, 116(39): 19609-19618. DOI: 10.1073/pnas.1908626116.
[67]
Steele CW, Karim SA, Leach JDG, et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2016, 29(6): 832-845. DOI: 10.1016/j.ccell.2016.04.014.
[68]
Hamano Y, Zeisberg M, Sugimoto H, et al. Physiological levels of tumstatin, a fragment of collagen Ⅳ alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin[J]. Cancer Cell, 2003, 3(6): 589-601. DOI: 10.1016/s1535-6108(03)00133-8.
[69]
吴江为, 张巧玲, 王选银, 等. CD248+CAFs激活Hippo通路介导细胞外基质重塑促进NSCLC转移的机制研究[J]. 医用生物力学, 2024, 39(S1): 124.
[70]
于彪, 刘晴, 吴晓明. SDF-1/CXCR4在肿瘤相关成纤维细胞中的作用[J]. 基础医学与临床, 2020, 40(9): 1256-1260. DOI: 10.16352/j.issn.1001-6325.2020.09.023.
[71]
邓浩强. 黑色素瘤小细胞外囊泡调控癌相关成纤维细胞促血管生成表型的分子机制研究& 病例报告[D]. 武汉: 武汉大学, 2022.
[72]
Nywening TM, Belt BA, Cullinan DR, et al. Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma[J]. Gut, 2018, 67(6): 1112-1123. DOI: 10.1136/gutjnl-2017-313738.
[73]
Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry[J]. Am J Pathol, 1999, 155(3): 739-752. DOI: 10.1016/S0002-9440(10)65173-5.
[74]
彭琼乐, 孙艳, 赵浏阳, 等. 癌相关成纤维细胞在肿瘤发生发展中的作用[J]. 生物医学工程学杂志, 2013, 30(1): 200-203.
[75]
Farhangnia P, Khorramdelazad H, Nickho H, et al. Current and future immunotherapeutic approaches in pancreatic cancer treatment[J]. J Hematol Oncol, 2024, 17(1): 40. DOI: 10.1186/s13045-024-01561-6.
[76]
Liu T, Han C, Wang S, et al. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy[J]. J Hematol Oncol, 2019, 12(1): 86. DOI: 10.1186/s13045-019-0770-1.
[77]
Gorchs L, Kaipe H. Interactions between cancer-associated fibroblasts and T cells in the pancreatic tumor microenvironment and the role of chemokines[J]. Cancers, 2021, 13(12): 2995. DOI: 10.3390/cancers13122995.
[78]
Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer, 2021, 20(1): 131. DOI: 10.1186/s12943-021-01428-1.
[79]
Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2, 3-dioxygenase[J]. Immunity, 2005, 22(5): 633-642. DOI: 10.1016/j.immuni.2005.03.013.
[80]
Åkerfelt M, Bayramoglu N, Robinson S, et al. Automated tracking of tumor-stroma morphology in microtissues identifies functional targets within the tumor microenvironment for therapeutic intervention[J]. Oncotarget, 2015, 6(30): 30035-30056. DOI: 10.18632/oncotarget.5046.
[81]
Coursier D, Calvo F. CAFs vs. TECs: when blood feuds fuel cancer progression, dissemination and therapeutic resistance[J]. Cell Oncol, 2024, 47(4): 1091-1112. DOI: 10.1007/s13402-024-00931-z.
[82]
张倩, 梁亚冰, 杨凌. 肿瘤相关成纤维细胞在食管鳞癌中作用的研究进展[J]. 肿瘤, 2022, 42(4): 295-304. DOI: 10.3781/j.issn.1000-7431.2021.2011-0961.
[83]
Lee H, Hwang M, Jang S, et al. Immune regulatory function of cancer-associated fibroblasts in non-small cell lung cancer[J]. Tuberc Respir Dis, 2023, 86(4): 304-318. DOI: 10.4046/trd.2022.0129.
[84]
Fitzgerald AA, Wang S, Agarwal V, et al. DPP inhibition alters the CXCR3 axis and enhances NK and CD8+ T cell infiltration to improve anti-PD1 efficacy in murine models of pancreatic ductal adenocarcinoma[J]. J Immunother Cancer, 2021, 9(11): e002837. DOI: 10.1136/jitc-2021-002837.
[85]
Zielińska KA, Katanaev VL. The signaling duo CXCL12 and CXCR4: chemokine fuel for breast cancer tumorigenesis[J]. Cancers, 2020, 12(10): 3071. DOI: 10.3390/cancers12103071.
[86]
Bordry N, Broggi MAS, de Jonge K, et al. Lymphatic vessel density is associated with CD8+ T cell infiltration and immunosuppressive factors in human melanoma[J]. Oncoimmunology, 2018, 7(8): e1462878. DOI: 10.1080/2162402X.2018.1462878.
[87]
Harmon C, O'Farrelly C, Robinson MW. The immune consequences of lactate in the tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1259: 113-124. DOI: 10.1007/978-3-030-43093-1_7.
[88]
Sun X, Cai W, Li H, et al. Endothelial-like cancer-associated fibroblasts facilitate pancreatic cancer metastasis via vasculogenic mimicry and paracrine signalling[J]. Gut, 2025, 74(9): 1437-1451. DOI: 10.1136/gutjnl-2024-333638.
[1] 李雨秋, 莫红楠. 乳腺癌肿瘤微环境特征及免疫治疗新进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 331-338.
[2] 李勇义, 赵均雄, 郭建东, 李文萱, 孟占鳌, 覃杰, 陈涵潇. 瘤体-瘤周细胞外容积模型对前列腺癌的诊断价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 56-64.
[3] 杜静怡, 徐兴祥. 结缔组织病相关间质性肺疾病与炎症相关信号通路的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 837-840.
[4] 张婷, 张延美, 范皎, 卜玉, 张莉. 负载R848疏水性介孔二氧化硅纳米粒的制备及复极化巨噬细胞的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(06): 339-345.
[5] 刘沐芸, 侯凯翔, 韩奇鹏, 崔诗慧, 魏殿华, 符业优, 丁关焱, 从丽萍, 梁晓, 安刚. 脂肪与骨髓间充质干细胞的免疫调节作用及协同治疗潜力分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 220-228.
[6] 孟泓宇, 戴锦辉, 胡嘉金, 李光辉. 炎性细胞因子与胰腺导管腺癌的因果关系:一项孟德尔随机化研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 948-955.
[7] 吴刚, 严燃星, 严鑫, 阎婧, 何跃明, 朱倩. 基于血清和组织外泌体多组学分析筛选胰腺癌诊断和预后标志物[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 962-972.
[8] 宋柯瑾, 李文星. 肿瘤相关中性粒细胞在结直肠癌中的双重调控作用及临床意义[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(06): 546-551.
[9] 姚金平, 郭涛, 张逸辰, 常磊, 冯雨舟, 崔精, 陈建欢, 鲍传庆. 基于免疫微环境分析探讨FN1与DOCK2在结肠癌中的预后价值[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 333-344.
[10] 马剑波, 许浩, 陈一笑. 人脐带间充质干细胞来源外泌体对脑出血后炎症反应和神经损伤的作用机制[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(05): 280-289.
[11] 崔滨, 王丹慧, 王林, 陈国强. Treg细胞在神经病理性疼痛中的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(05): 303-308.
[12] 姜宇丰, 张睿, 闵红巍. 全关节置换术后异位骨化的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 526-531.
[13] 武世伦, 姚常玉, 许力, 狄治杉, 夏奇, 孙文兵, 孔健. 肿瘤相关巨噬细胞在肝细胞癌血管新生中的作用及研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 388-391.
[14] 于梦凡, 孙道萍. 滤泡辅助性T细胞在恶性淋巴瘤中的研究进展[J/OL]. 中华诊断学电子杂志, 2025, 13(04): 284-288.
[15] 林烨涛, 黄浩淇, 徐穗莲, 古媚, 何奕涛. 环状RNA对缺血性卒中调控作用的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(06): 538-545.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?