[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1):7-30.
|
[2] |
Bockhorn M, Uzunoglu FG, Adham M, et al. Borderline resectable pancreatic cancer: a consensus statement by the International Study Group of Pancreatic Surgery (ISGPS)[J]. Surgery, 2014, 155(6):977-988.
|
[3] |
Genovese G, Carugo A, Tepper J, et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer[J]. Nature, 2017, 542(7641):362-366.
|
[4] |
Sahin IH, Iacobuzio-Donahue CA, O'Reilly EM. Molecular signature of pancreatic adenocarcinoma: an insight from genotype to phenotype and challenges for targeted therapy[J]. Expert Opin Ther Targets, 2016, 20(3):341-359.
|
[5] |
Adams BD, Parsons C, Walker L, et al. Targeting noncoding RNAs in disease[J]. J Clin Invest, 2017, 127(3):761-771.
|
[6] |
Yonemori K, Kurahara H, Maemura K, et al. MicroRNA in pancreatic cancer[J]. J Hum Genet, 2017, 62(1):33-40.
|
[7] |
Huang J, Liu J, Chen-Xiao K, et al. Advance in microRNA asa potential biomarker for early detection of pancreatic cancer[J]. Biomark Res, 2016(4):20.
|
[8] |
Merhautova J, Demlova R, Slaby O. MicroRNA-based therapy in animal models of selected gastrointestinal cancers[J]. Front Pharmacol, 2016(7):329.
|
[9] |
Pietrasz D, Pécuchet N, Garlan F, et al. Plasma circulating tumor DNA in pancreatic cancer patients is a prognostic marker[J]. Clin Cancer Res, 2017, 23(1):116-123.
|
[10] |
Zoghbi HY, Beaudet AL. Epigenetics and human disease[J]. Cold Spring Harb Perspect Biol, 2016, 8(2):a019497
|
[11] |
Ronnekleiv-Kelly SM, Sharma A, Ahuja N. Epigenetic therapy and chemosensitization in solid malignancy[J]. Cancer Treat Rev, 2017(55):200-208.
|
[12] |
Biswas S, Rao CM. Epigenetics in cancer: fundamentals and beyond[J]. Pharmacol Ther, 2017(173):118-134.
|
[13] |
van Kampen JG, Marijnissen-van Zanten MA, Simmer F, et al. Epigenetic targeting in pancreatic cancer[J]. Cancer Treat Rev, 2014, 40(5):656-664.
|
[14] |
Frampton AE, Castellano L, Colombo T, et al. Integrated molecular analysis to investigate the role of microRNAs in pancreatic tumour growth and progression[J]. Lancet, 2015, 385 Suppl 1:S37.
|
[15] |
Wang C, Liu P, Wu H, et al. MicroRNA-323-3p inhibits cell invasion and metastasis in pancreatic ductal adenocarcinoma via direct suppression of SMAD2 and SMAD3[J]. Oncotarget, 2016, 7(12):14912-14924.
|
[16] |
Botla SK, Savant S, Jandaghi P, et al. Early epigenetic downregulation of microRNA-192 expression promotes pancreatic cancer progression[J]. Cancer Res, 2016, 76(14):4149-4159.
|
[17] |
Piriyapongsa J, Jordan IK. A family of human microRNA genes from miniature inverted-repeat transposable elements[J]. PLoS One, 2007, 2(2):e203.
|
[18] |
Shi Y, Qiu M, Wu Y, et al. MiR-548-3p functions as an anti-oncogenic regulator in breast cancer[J]. Biomed Pharmacother, 2015(75):111-116.
|
[19] |
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017, 16(3):203-222.
|
[20] |
Li Y, Xie J, Xu X, et al. MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-λ1[J]. Protein Cell, 2013, 4(2):130-141.
|
[21] |
Zhan Y, Liang X, Li L, et al. MicroRNA-548j functions as a metastasis promoter in human breast cancer by targeting Tensin1[J]. Mol Oncol, 2016, 10(6):838-849.
|