切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2019, Vol. 08 ›› Issue (02) : 154 -158. doi: 10.3877/cma.j.issn.2095-3232.2019.02.016

临床研究

18F-FDG PET-CT影像组学鉴别中低分化肝细胞癌和肝内胆管细胞癌
周子东1, 查悦明1, 黄文山1, 杨敏1, 张桂雄1, 许杰华1,()   
  1. 1. 510630 广州,中山大学附属第三医院核医学科
  • 收稿日期:2018-12-20 出版日期:2019-04-10
  • 通信作者: 许杰华
  • 基金资助:
    国家自然科学基金(81101866); 广东省自然科学基金(2018A030313200)

Differential diagnosis of moderately- or poorly-differentiated hepatocellular carcinoma from intrahepatic cholangiocarcinoma based on 18F-FDG PET-CT radiomics features

Zidong Zhou1, Yueming Zha1, Wenshan Huang1, Min Yang1, Guixiong Zhang1, Jiehua Xu1,()   

  1. 1. Department of Nuclear Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2018-12-20 Published:2019-04-10
  • Corresponding author: Jiehua Xu
引用本文:

周子东, 查悦明, 黄文山, 杨敏, 张桂雄, 许杰华. 18F-FDG PET-CT影像组学鉴别中低分化肝细胞癌和肝内胆管细胞癌[J/OL]. 中华肝脏外科手术学电子杂志, 2019, 08(02): 154-158.

Zidong Zhou, Yueming Zha, Wenshan Huang, Min Yang, Guixiong Zhang, Jiehua Xu. Differential diagnosis of moderately- or poorly-differentiated hepatocellular carcinoma from intrahepatic cholangiocarcinoma based on 18F-FDG PET-CT radiomics features[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2019, 08(02): 154-158.

目的

探讨18F-氟脱氧葡萄糖(18F-FDG)PET-CT影像组学方法鉴别中低分化肝细胞癌(HCC)和肝内胆管细胞癌(ICC)的可行性。

方法

本前瞻性研究对象为2015年6月至2018年4月在中山大学附属第三医院行18F-FDG PET-CT检查的36例原发性肝癌患者。患者签署知情同意书,符合医学伦理学规定。其中男31例,女5例;年龄21~74岁,中位年龄52岁。中低分化HCC 26例,ICC 10例。利用3D Slicer软件在18F-FDG PET-CT图像上勾画病灶感兴趣区体积,提取每个病灶的影像组学特征。105个影像组学特征经LASSO回归模型进行筛选和优化,构建影像组学标签诊断模型。采用受试者工作特征(ROC)曲线检验该模型在鉴别中低分化HCC和ICC中的诊断效能。

结果

每个病灶均得到105个PET-CT影像组学特征,筛选和优化后得到2个PET-CT影像组学特征Sphericity和ZoneVariance,纳入Logistic回归模型,得到影像组学标签诊断模型为logit(P)=-8.984+10.506×Sphericity+61.341×ZoneVariance。该模型的ROC曲线下面积为0.923,95%CI:0.84~1.00,敏感度为1.00,特异度为0.73。

结论

18F-FDG PET-CT影像组学能较好地鉴别中低分化HCC和ICC,具有较高的敏感度和特异度,诊断价值高。

Objective

To investigate the feasibility of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography with computed tomography (PET-CT) radiomics in the differential diagnosis of moderately- or poorly-differentiated hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma (ICC).

Methods

In this prospective study, 36 patients with primary liver cancer receiving 18F-FDG PET-CT in the Third Affiliated Hospital of Sun Yat-sen University from June 2015 to April 2018 were recruited. The informed consents of all patients were obtained and the local ethical committee approval was received. Among them, 31 patients were male and 5 female, aged 21-74 years with a median age of 52 years. 26 patients were diagnosed with moderately- or poorly-differentiated HCC and 10 of ICC. The volume of region of interests on the 18F-FDG PET-CT images was delineated by using 3D Slicer software. The radiomic features of each lesion were extracted. A total of 105 radiomic features were screened and optimized by LASSO regression model to construct a diagnostic model with radiomics signatures. The efficacy of this model in differential diagnosis from moderately- or poorly-differentiated HCC and ICC was evaluated by the receiver operating characteristic (ROC) curve.

Results

In total, 105 PET-CT radiomic features were obtained for each lesion. After screening and optimization, 2 PET-CT radiomic features, Sphericity and ZoneVariance, were sorted and included into the Logistic regression model. The diagnostic model with radiomics signatures was logit (P) =-8.984+10.506×Sphericity+61.341×ZoneVariance. The area under ROC curve of this model was 0.923, 95%CI: 0.84-1.00, with the sensitivity 1.00 and specificity 0.73.

Conclusions

18F-FDG PET-CT radiomics can be adopted to differentiate moderately- or poorly-differentiated HCC from ICC with a high sensitivity, specificity and diagnostic value.

图1 利用LASSO回归筛选影像组学参数过程 注:a为LASSO回归模型的特征系数收敛图。每一条曲线代表了每一个自变量系数的变化轨迹,随着参数log(λ)的增大,对模型的变量惩罚力度加大,从而使无关变量的系数趋向于0。下横轴为log(λ),上横轴数值为对应的特征数量,纵轴为特征系数。b为LOOCV验证方法挑选出最佳λ值。纵轴是偏似然偏差。下横轴表示log(λ)值。上横轴数值表示对应的特征数量。本研究中取左边的第1条垂直虚线对应的最优参数取值,右边的垂直虚线在标准误差允许范围内
图2 PET-CT影像组学标签诊断模型预测结果的ROC曲线 注:AUC为ROC曲线下面积,PET-CT为正电子发射计算机断层显像,ROC为受试者工作特征
[1]
Roayaie S, Guarrera JV, Ye MQ, et al. Aggressive surgical treatment of intrahepatic cholangiocarcinoma: predictors of outcomes[J]. J Am Coll Surg, 1998, 187(4):365-372.
[2]
Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2012, 379(9822):1245-1255.
[3]
Zhou XD, Tang ZY, Fan J, et al. Intrahepatic cholangiocarcinoma: report of 272 patients compared with 5,829 patients with hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2009, 135(8): 1073-1080.
[4]
Brychtova V, Zampachova V, Hrstka R, et al. Differential expression of anterior gradient protein 3 in intrahepatic cholangiocarcinoma and hepatocellular carcinoma[J]. Exp Mol Pathol, 2014, 96(3):375-381.
[5]
Kim YK, Kim CS, Han YM, et al. Comparison of gadoxetic acid-enhanced MRI and superparamagnetic iron oxide-enhanced MRI for the detection of hepatocellular carcinoma[J]. Clin Radiol, 2010, 65(5):358-365.
[6]
Joo I, Lee JM. Imaging bile duct tumors: pathologic concepts, classification, and early tumor detection[J]. Abdom Imaging, 2013, 38(6):1334-1350.
[7]
Shah A, Tang A, Santillan C, et al. Cirrhotic liver: what's that nodule? the LI-RADS approach[J]. J Magn Reson Imaging, 2016, 43(2):281-294.
[8]
Hanna RF, Aguirre DA, Kased N, et al. Cirrhosis-associated hepatocellular nodules: correlation of histopathologic and MR imaging features[J]. Radiographics, 2008, 28(3):747-769.
[9]
Choi SY, Kim YK, Min JH, et al. Added value of ancillary imaging features for differentiating scirrhous hepatocellular carcinoma from intrahepatic cholangiocarcinoma on gadoxetic acid-enhanced MR imaging[J]. Eur Radiol, 2018, 28(6):2549-2560.
[10]
Park HJ, Kim YK, Park MJ, et al. Small intrahepatic mass-forming cholangiocarcinoma: target sign on diffusion-weighted imaging for differentiation from hepatocellular carcinoma[J]. Abdom Imaging, 2013, 38(4):793-801.
[11]
Chong YS, Kim YK, Lee MW, et al. Differentiating mass-forming intrahepatic cholangiocarcinoma from atypical hepatocellular carcinoma using gadoxetic acid-enhanced MRI[J]. Clin Radiol, 2012, 67(8):766-773.
[12]
Lee JD, Yun M, Lee JM, et al. Analysis of gene expression profiles of hepatocellular carcinomas with regard to 18F-fluorodeoxyglucose uptake pattern on positron emission tomography[J]. Eur J Nucl Med Mol Imaging, 2004, 31(12):1621-1630.
[13]
Ho CL, Yu SC, Yeung DW. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses[J]. J Nucl Med, 2003, 44(2):213-221.
[14]
Kim YJ, Yun M, Lee WJ, et al. Usefulness of 18F-FDG PET in intrahepatic cholangiocarcinoma[J]. Eur J Nucl Med Mol Imaging, 2003, 30(11):1467-1472.
[15]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4):441-446.
[16]
Kirienko M, Cozzi L, Rossi A, et al. Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions[J]. Eur J Nucl Med Mol Imaging, 2018, 45(10):1649-1660.
[17]
Nasu K, Kuroki Y, Tsukamoto T, et al. Diffusion-weighted imaging of surgically resected hepatocellular carcinoma: imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade[J]. AJR Am J Roentgenol, 2009, 193(2):438-444.
[18]
Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network[J]. Magn Reson Imaging, 2012, 30(9):1323-1341.
[19]
Harrell Frank E., Jr. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis[M]. New York: Springer-Verlag, 2015.
[20]
Zhao YJ, Chen WX, Wu DS, et al. Differentiation of mass-forming intrahepatic cholangiocarcinoma from poorly differentiated hepatocellular carcinoma: based on the multivariate analysis of contrast-enhanced computed tomography findings[J]. Abdom Radiol, 2016, 41(5):978-989.
[21]
Xue R, Li R, Guo H, et al. Variable intra-tumor genomic heterogeneity of multiple lesions in patients with hepatocellular carcinoma[J]. Gastroenterology, 2016, 150(4):998-1008.
[22]
Chicklore S, Goh V, Siddique M, et al. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis[J]. Eur J Nucl Med Mol Imaging, 2013, 40(1):133-140.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[3] 中国医师协会肝癌专业委员会. 肝细胞癌伴微血管侵犯诊断和治疗中国专家共识(2024版)[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 313-324.
[4] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[5] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[6] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[7] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[8] 李一帆, 朱帝文, 任伟新, 鲍应军, 顾俊鹏, 张海潇, 曹耿飞, 阿斯哈尔·哈斯木, 纪卫政. 血GP73水平在原发性肝癌TACE疗效评价中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 825-830.
[9] 刘敏思, 李荣, 李媚. 基于GGT与Plt比值的模型在HBV相关肝细胞癌诊断中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 831-835.
[10] 陆镜明, 韩大为, 任耀星, 黄天笑, 向俊西, 张谞丰, 吕毅, 王傅民. 基于术前影像组学的肝内胆管细胞癌淋巴结转移预测的系统性分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 852-858.
[11] 焦振东, 惠鹏, 金上博. 三维可视化结合ICG显像技术在腹腔镜肝切除术治疗复发性肝癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 859-864.
[12] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[13] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[14] 吴警, 吐尔洪江·吐逊, 温浩. 肝切除术前肝功能评估新进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 889-893.
[15] 邓万玉, 陈富, 许磊波. 肝硬化与非肝硬化乙肝相关性肝癌患者术后无复发生存比较及其影响因素分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 670-674.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?