切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2019, Vol. 08 ›› Issue (02) : 154 -158. doi: 10.3877/cma.j.issn.2095-3232.2019.02.016

临床研究

18F-FDG PET-CT影像组学鉴别中低分化肝细胞癌和肝内胆管细胞癌
周子东1, 查悦明1, 黄文山1, 杨敏1, 张桂雄1, 许杰华1,()   
  1. 1. 510630 广州,中山大学附属第三医院核医学科
  • 收稿日期:2018-12-20 出版日期:2019-04-10
  • 通信作者: 许杰华
  • 基金资助:
    国家自然科学基金(81101866); 广东省自然科学基金(2018A030313200)

Differential diagnosis of moderately- or poorly-differentiated hepatocellular carcinoma from intrahepatic cholangiocarcinoma based on 18F-FDG PET-CT radiomics features

Zidong Zhou1, Yueming Zha1, Wenshan Huang1, Min Yang1, Guixiong Zhang1, Jiehua Xu1,()   

  1. 1. Department of Nuclear Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2018-12-20 Published:2019-04-10
  • Corresponding author: Jiehua Xu
引用本文:

周子东, 查悦明, 黄文山, 杨敏, 张桂雄, 许杰华. 18F-FDG PET-CT影像组学鉴别中低分化肝细胞癌和肝内胆管细胞癌[J]. 中华肝脏外科手术学电子杂志, 2019, 08(02): 154-158.

Zidong Zhou, Yueming Zha, Wenshan Huang, Min Yang, Guixiong Zhang, Jiehua Xu. Differential diagnosis of moderately- or poorly-differentiated hepatocellular carcinoma from intrahepatic cholangiocarcinoma based on 18F-FDG PET-CT radiomics features[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2019, 08(02): 154-158.

目的

探讨18F-氟脱氧葡萄糖(18F-FDG)PET-CT影像组学方法鉴别中低分化肝细胞癌(HCC)和肝内胆管细胞癌(ICC)的可行性。

方法

本前瞻性研究对象为2015年6月至2018年4月在中山大学附属第三医院行18F-FDG PET-CT检查的36例原发性肝癌患者。患者签署知情同意书,符合医学伦理学规定。其中男31例,女5例;年龄21~74岁,中位年龄52岁。中低分化HCC 26例,ICC 10例。利用3D Slicer软件在18F-FDG PET-CT图像上勾画病灶感兴趣区体积,提取每个病灶的影像组学特征。105个影像组学特征经LASSO回归模型进行筛选和优化,构建影像组学标签诊断模型。采用受试者工作特征(ROC)曲线检验该模型在鉴别中低分化HCC和ICC中的诊断效能。

结果

每个病灶均得到105个PET-CT影像组学特征,筛选和优化后得到2个PET-CT影像组学特征Sphericity和ZoneVariance,纳入Logistic回归模型,得到影像组学标签诊断模型为logit(P)=-8.984+10.506×Sphericity+61.341×ZoneVariance。该模型的ROC曲线下面积为0.923,95%CI:0.84~1.00,敏感度为1.00,特异度为0.73。

结论

18F-FDG PET-CT影像组学能较好地鉴别中低分化HCC和ICC,具有较高的敏感度和特异度,诊断价值高。

Objective

To investigate the feasibility of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography with computed tomography (PET-CT) radiomics in the differential diagnosis of moderately- or poorly-differentiated hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma (ICC).

Methods

In this prospective study, 36 patients with primary liver cancer receiving 18F-FDG PET-CT in the Third Affiliated Hospital of Sun Yat-sen University from June 2015 to April 2018 were recruited. The informed consents of all patients were obtained and the local ethical committee approval was received. Among them, 31 patients were male and 5 female, aged 21-74 years with a median age of 52 years. 26 patients were diagnosed with moderately- or poorly-differentiated HCC and 10 of ICC. The volume of region of interests on the 18F-FDG PET-CT images was delineated by using 3D Slicer software. The radiomic features of each lesion were extracted. A total of 105 radiomic features were screened and optimized by LASSO regression model to construct a diagnostic model with radiomics signatures. The efficacy of this model in differential diagnosis from moderately- or poorly-differentiated HCC and ICC was evaluated by the receiver operating characteristic (ROC) curve.

Results

In total, 105 PET-CT radiomic features were obtained for each lesion. After screening and optimization, 2 PET-CT radiomic features, Sphericity and ZoneVariance, were sorted and included into the Logistic regression model. The diagnostic model with radiomics signatures was logit (P) =-8.984+10.506×Sphericity+61.341×ZoneVariance. The area under ROC curve of this model was 0.923, 95%CI: 0.84-1.00, with the sensitivity 1.00 and specificity 0.73.

Conclusions

18F-FDG PET-CT radiomics can be adopted to differentiate moderately- or poorly-differentiated HCC from ICC with a high sensitivity, specificity and diagnostic value.

图1 利用LASSO回归筛选影像组学参数过程 注:a为LASSO回归模型的特征系数收敛图。每一条曲线代表了每一个自变量系数的变化轨迹,随着参数log(λ)的增大,对模型的变量惩罚力度加大,从而使无关变量的系数趋向于0。下横轴为log(λ),上横轴数值为对应的特征数量,纵轴为特征系数。b为LOOCV验证方法挑选出最佳λ值。纵轴是偏似然偏差。下横轴表示log(λ)值。上横轴数值表示对应的特征数量。本研究中取左边的第1条垂直虚线对应的最优参数取值,右边的垂直虚线在标准误差允许范围内
图2 PET-CT影像组学标签诊断模型预测结果的ROC曲线 注:AUC为ROC曲线下面积,PET-CT为正电子发射计算机断层显像,ROC为受试者工作特征
[1]
Roayaie S, Guarrera JV, Ye MQ, et al. Aggressive surgical treatment of intrahepatic cholangiocarcinoma: predictors of outcomes[J]. J Am Coll Surg, 1998, 187(4):365-372.
[2]
Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2012, 379(9822):1245-1255.
[3]
Zhou XD, Tang ZY, Fan J, et al. Intrahepatic cholangiocarcinoma: report of 272 patients compared with 5,829 patients with hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2009, 135(8): 1073-1080.
[4]
Brychtova V, Zampachova V, Hrstka R, et al. Differential expression of anterior gradient protein 3 in intrahepatic cholangiocarcinoma and hepatocellular carcinoma[J]. Exp Mol Pathol, 2014, 96(3):375-381.
[5]
Kim YK, Kim CS, Han YM, et al. Comparison of gadoxetic acid-enhanced MRI and superparamagnetic iron oxide-enhanced MRI for the detection of hepatocellular carcinoma[J]. Clin Radiol, 2010, 65(5):358-365.
[6]
Joo I, Lee JM. Imaging bile duct tumors: pathologic concepts, classification, and early tumor detection[J]. Abdom Imaging, 2013, 38(6):1334-1350.
[7]
Shah A, Tang A, Santillan C, et al. Cirrhotic liver: what's that nodule? the LI-RADS approach[J]. J Magn Reson Imaging, 2016, 43(2):281-294.
[8]
Hanna RF, Aguirre DA, Kased N, et al. Cirrhosis-associated hepatocellular nodules: correlation of histopathologic and MR imaging features[J]. Radiographics, 2008, 28(3):747-769.
[9]
Choi SY, Kim YK, Min JH, et al. Added value of ancillary imaging features for differentiating scirrhous hepatocellular carcinoma from intrahepatic cholangiocarcinoma on gadoxetic acid-enhanced MR imaging[J]. Eur Radiol, 2018, 28(6):2549-2560.
[10]
Park HJ, Kim YK, Park MJ, et al. Small intrahepatic mass-forming cholangiocarcinoma: target sign on diffusion-weighted imaging for differentiation from hepatocellular carcinoma[J]. Abdom Imaging, 2013, 38(4):793-801.
[11]
Chong YS, Kim YK, Lee MW, et al. Differentiating mass-forming intrahepatic cholangiocarcinoma from atypical hepatocellular carcinoma using gadoxetic acid-enhanced MRI[J]. Clin Radiol, 2012, 67(8):766-773.
[12]
Lee JD, Yun M, Lee JM, et al. Analysis of gene expression profiles of hepatocellular carcinomas with regard to 18F-fluorodeoxyglucose uptake pattern on positron emission tomography[J]. Eur J Nucl Med Mol Imaging, 2004, 31(12):1621-1630.
[13]
Ho CL, Yu SC, Yeung DW. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses[J]. J Nucl Med, 2003, 44(2):213-221.
[14]
Kim YJ, Yun M, Lee WJ, et al. Usefulness of 18F-FDG PET in intrahepatic cholangiocarcinoma[J]. Eur J Nucl Med Mol Imaging, 2003, 30(11):1467-1472.
[15]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4):441-446.
[16]
Kirienko M, Cozzi L, Rossi A, et al. Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions[J]. Eur J Nucl Med Mol Imaging, 2018, 45(10):1649-1660.
[17]
Nasu K, Kuroki Y, Tsukamoto T, et al. Diffusion-weighted imaging of surgically resected hepatocellular carcinoma: imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade[J]. AJR Am J Roentgenol, 2009, 193(2):438-444.
[18]
Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network[J]. Magn Reson Imaging, 2012, 30(9):1323-1341.
[19]
Harrell Frank E., Jr. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis[M]. New York: Springer-Verlag, 2015.
[20]
Zhao YJ, Chen WX, Wu DS, et al. Differentiation of mass-forming intrahepatic cholangiocarcinoma from poorly differentiated hepatocellular carcinoma: based on the multivariate analysis of contrast-enhanced computed tomography findings[J]. Abdom Radiol, 2016, 41(5):978-989.
[21]
Xue R, Li R, Guo H, et al. Variable intra-tumor genomic heterogeneity of multiple lesions in patients with hepatocellular carcinoma[J]. Gastroenterology, 2016, 150(4):998-1008.
[22]
Chicklore S, Goh V, Siddique M, et al. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis[J]. Eur J Nucl Med Mol Imaging, 2013, 40(1):133-140.
[1] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 王兴, 张峰伟. 腹腔镜肝切除联合断面射频消融治疗伴微血管侵犯肝细胞癌的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 580-583.
[4] 杜锡林, 谭凯, 贺小军, 白亮亮, 赵瑶瑶. 肝细胞癌转化治疗方式[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 597-601.
[5] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[6] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[7] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[8] 张文华, 陶焠, 胡添松. 不同部位外生型肝癌临床病理特点及其对术后肝内复发和预后影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 651-655.
[9] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[10] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[11] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[12] 叶文涛, 吴忠均, 廖锐. 癌旁组织ALOX15表达与肝癌根治性切除术后预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 708-712.
[13] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[14] 王峰杰, 王礼光, 廖珊, 刘颖, 符荣党, 陈焕伟. 腹腔镜右半肝切除术治疗肝癌的安全性与疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 517-522.
[15] 张海涛, 贾哲, 马超, 张其坤, 武聚山, 郭庆良, 曾道炳, 栗光明, 王孟龙. 手术切除与射频消融治疗血管周围型单发小肝癌临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 523-527.
阅读次数
全文


摘要