切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2020, Vol. 09 ›› Issue (05) : 488 -492. doi: 10.3877/cma.j.issn.2095-3232.2020.05.021

所属专题: 文献

基础研究

基于生物信息学研究肝癌发生相关基因及其功能
周国俊1, 应伟1, 李文菠1, 冯彦超1, 吴妮莎1, 黄理政1, 雷蕾1, 侍琳1, 冷政伟1,()   
  1. 1. 637000 四川省南充市,川北医学院附属医院肝胆外二科
  • 收稿日期:2020-06-25 出版日期:2020-10-10
  • 通信作者: 冷政伟
  • 基金资助:
    四川省科技厅应用基础项目(2017JY0170,CBY17-A-ZD01); 南充市研发资金项目(16YFZJ0126、16YFZJ0055); 南充市重大技术攻关项目(18SXHZ0460)

Bioinformatics-based study on hepatocellular carcinoma related genes and functions

Guojun Zhou1, Wei Ying1, Wenbo Li1, Yanchao Feng1, Nisha Wu1, Lizheng Huang1, Lei Lei1, Lin Shi1, Zhengwei Leng1,()   

  1. 1. Department Ⅱ of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
  • Received:2020-06-25 Published:2020-10-10
  • Corresponding author: Zhengwei Leng
  • About author:
    Corresponding author: Leng Zhengwei, Email:
引用本文:

周国俊, 应伟, 李文菠, 冯彦超, 吴妮莎, 黄理政, 雷蕾, 侍琳, 冷政伟. 基于生物信息学研究肝癌发生相关基因及其功能[J]. 中华肝脏外科手术学电子杂志, 2020, 09(05): 488-492.

Guojun Zhou, Wei Ying, Wenbo Li, Yanchao Feng, Nisha Wu, Lizheng Huang, Lei Lei, Lin Shi, Zhengwei Leng. Bioinformatics-based study on hepatocellular carcinoma related genes and functions[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2020, 09(05): 488-492.

目的

基于生物信息学探讨肝细胞癌(肝癌)发生相关基因及其功能。

方法

从公共基因数据库GEO筛选并下载肝癌组织及癌旁组织基因芯片,通过GEO2R在线工具和Venn图网站筛选出差异表达基因(DEGs)。对筛选出来的DEGs在DAVID网站进行基因本体(GO)功能分析和KEGG通路富集分析,再用STRING网站及Cytscape软件进行蛋白-蛋白相互作用网络分析并筛选出核心DEGs,最后将核心DEGs在Kaplan-Meier Plotter网站进行生存分析,筛选出与预后相关的DEGs。将与预后相关且在肝癌组织中高表达的DEGs经metascape网站进行GO功能及KEGG通路富集分析,分析与肝癌发生、发展相关的重要基因及其功能。

结果

从3个基因芯片GSE60502、GSE14520、GSE45267共筛选出DEGs 124个。GO功能、KEGG通路富集分析、STRING网站及Cytscape软件分析后筛选出22个核心DEGs,11个基因与肝癌预后相关,其中9个基因在肝癌组织中高表达,包括GINS1、AURKA、NUSAP1、TOP2A、ASPM、RRM2、PRC1、RACGAP1、GMNN。metascape网站及KEGG通路富集分析发现,高表达基因涉及细胞核分裂过程、细胞周期中的有丝分裂、纺锤体组装、DNA构象改变。

结论

基于生物信息学分析发现9个基因是肝细胞癌发生、发展的重要基因,参与细胞核分裂过程、细胞周期中的有丝分裂、纺锤体组装、DNA构象改变过程。

Objective

To explore the genes and functions related to hepatocellular carcinoma (HCC) based on bioinformatics study.

Methods

Gene chips of HCC tissues and para-carcinoma tissues were screened and downloaded from the GEO public gene database, and differentially expressed genes (DEGs) were identified with GEO2R online tool and Venn diagram. The selected DEGs were subjected to GO function analysis and KEGG pathway enrichment analysis on DAVID website, and then the core DEGs were analyzed and selected through the protein-protein interaction network analysis with STRING website and Cytscape software. Finally, survival analysis of the core DEGs was performed on Kaplan-Meier Plotter website to screen the DEGs related to clinical prognosis. The DEGs related to clinical prognosis and highly expressed in HCC tissues were subjected to GO function and KEGG pathway enrichment analysis on metascape website to explore the genes and their functions which were associated with the development of HCC.

Results

A total of 124 DEGs were screened from 3 gene chips including GSE60502, GSE14520 and GSE45267. 22 core DEGs were screened by GO function, KEGG pathway enrichment analysis, STRING website and Cytscape software. Among them, 11 genes were related to the clinical prognosis of HCC, among which 9 genes were highly expressed in HCC tissues, including GINS1, AURKA, NUSAP1, TOP2A, ASPM, RRM2, PRC1, RACGAP1 and GMNN. Metascape website and KEGG pathway enrichment analysis showed that highly-expressed genes were involved in the nuclear division, mitosis in cell cycle, spindle assembly and DNA conformational changes.

Conclusions

Bioinformatics-based analysis demonstrates that 9 genes are important genes for the development of HCC, which participate in the process of nuclear division, mitosis in cell cycle, spindle assembly and DNA conformational change.

图1 Cytoscape软件后的核心DEGs
表1 18个共同表达的上调DEGs和106个共同表达的下调DEGs
图2 九个肝癌组织中高表达基因的GO功能和KEGG通路富集分析图
[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[2]
郭江,李洪璐,李常青.TACE联合微波消融治疗中晚期肝癌的临床疗效分析[J].川北医学院学报,2019, 34(2):219-222.
[3]
Dhiman VK, Bolt MJ, White KP. Nuclear receptors in cancer-uncovering new and evolving roles through genomic analysis[J]. Nat Rev Genet,2018,19(3):160-174.
[4]
Yang F, Cui P, Lu Y, et al. Requirement of the transcription factor YB-1 for maintaining the stemness of cancer stem cells and reverting differentiated cancer cells into cancer stem cells[J]. Stem Cell Res Ther,2019,10(1):233.
[5]
Tang L, Yu W, Wang Y, et al. Anlotinib inhibits synovial sarcoma by targeting GINS1:a novel downstream target oncogene in progression of synovial sarcoma[J]. Clin Transl Oncol, 2019, 21(12): 1624-1633.
[6]
Lian YF, Li SS, Huang YL, et al. Up-regulated and interrelated expressions of GINS subunits predict poor prognosis in hepatocellular carcinoma[J]. Biosci Rep,2018, 38(6): pii:BSR20181178.
[7]
Jacobsen A, Bosch LJW, Martens-de Kemp SR, et al. Aurora kinase A (AURKA) interaction with Wnt and Ras-MAPK signalling pathways in colorectal cancer[J]. Sci Rep, 2018, 8(1):7522.
[8]
Wang-Bishop L, Chen Z, Gomaa A, et al. Inhibition of AURKA reduces proliferation and survival of gastrointestinal cancer cells with activated KRAS by preventing activation of RPS6KB1[J]. Gastroenterology, 2019, 156(3):662-675, e7.
[9]
Wu C, Lyu J, Yang EJ, et al. Targeting AURKA-CDC25C axis to induce synthetic lethality in ARID1A-deficient colorectal cancer cells[J]. Nat Commun, 2018, 9(1):3212.
[10]
Dauch D, Rudalska R, Cossa G, et al. A MYC-aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer[J]. Nat Med, 2016, 22(7):744-753.
[11]
Zhang X, Pan Y, Fu H, et al. Nucleolar and spindle associated protein 1 (NUSAP1) inhibits cell proliferation and enhances susceptibility to epirubicin in invasive breast cancer cells by regulating cyclin D kinase (CDK1) and DLGAP5 expression[J]. Med Sci Monit, 2018, 24:8553-8564.
[12]
Xu Z, Wang Y, Xiong J, et al. NUSAP1 knockdown inhibits cell growth and metastasis of non-small-cell lung cancer through regulating BTG2/PI3K/Akt signaling[J]. J Cell Physiol, 2019, DOI: 10.1002/jcp.29282[Epub ahead of print].
[13]
Wang Y, Ju L, Xiao F, et al. Downregulation of nucleolar and spindle-associated protein 1 expression suppresses liver cancer cell function[J]. Exp Ther Med, 2019, 17(4):2969-2978.
[14]
Liu LM, Xiong DD, Lin P, et al. DNA topoisomerase 1 and 2A function as oncogenes in liver cancer and may be direct targets of nitidine chloride[J]. Int J Oncol, 2018, 53(5):1897-1912.
[15]
Pai VC, Hsu CC, Chan TS, et al. ASPM promotes prostate cancer stemness and progression by augmenting Wnt-Dvl-3-β-catenin signaling[J]. Oncogene, 2019, 38(8):1340-1353.
[16]
He B, Yin J, Gong S, et al. Bioinformatics analysis of key genes and pathways for hepatocellular carcinoma transformed from cirrhosis[J]. Medicine, 2017, 96(25):e6938.
[17]
Cai C, Wang W, Tu Z. Aberrantly DNA methylated-differentially expressed genes and pathways in hepatocellular carcinoma[J]. J Cancer, 2019, 10(2):355-366.
[18]
Zhu S, Zhao D, Yan L, et al. BMI1 regulates androgen receptor in prostate cancer independently of the polycomb repressive complex 1[J]. Nat Commun, 2018, 9(1):500.
[19]
Ye BL, Zheng R, Ruan XJ, et al. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway[J]. Biochem Biophys Res Commun, 2018, 495(1):414-420.
[20]
Hanselmann S, Wolter P, Malkmus J, et al. The microtubule-associated protein PRC1 is a potential therapeutic target for lung cancer[J]. Oncotarget, 2017, 9(4):4985-4997.
[21]
Yang XM, Cao XY, He P, et al. Overexpression of Rac GTPase activating protein 1 contributes to proliferation of cancer cells by reducing Hippo signaling to promote cytokinesis[J]. Gastroenterology, 2018, 155(4):1233-1249, e22.
[22]
Chen J, Xia H, Zhang X, et al. ECT2 regulates the Rho/ERK signalling axis to promote early recurrence in human hepatocellular carcinoma[J]. J Hepatol, 2015, 62(6):1287-1295.
[23]
Wu M, Liu Z, Zhang A, et al. Identification of key genes and pathways in hepatocellular carcinoma: a preliminary bioinformatics analysis[J]. Medicine, 2019, 98(5):e14287.
[24]
Li B, Pu K, Wu X. Identifying novel biomarkers in hepatocellular carcinoma by weighted gene co-expression network analysis[J]. Cell Biochem, 2019, DOI: 10.1002/jcb.28420[Epub ahead of print].
[25]
Kim HE, Kim DG, Lee KJ, et al. Frequent amplification of CENPF, GMNN and CDK13 genes in hepatocellular carcinomas[J]. PLoS One, 2012, 7(8): e43223.
[1] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[2] 张圣平, 邓琼, 张颖, 张建文, 梁辉, 王铸. 孤儿核受体HNF4α在肾透明细胞癌中的表达及意义[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 627-632.
[3] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[4] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[5] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[6] 张文华, 陶焠, 胡添松. 不同部位外生型肝癌临床病理特点及其对术后肝内复发和预后影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 651-655.
[7] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[8] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[9] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[10] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[11] 叶文涛, 吴忠均, 廖锐. 癌旁组织ALOX15表达与肝癌根治性切除术后预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 708-712.
[12] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[13] 杜锡林, 谭凯, 贺小军, 白亮亮, 赵瑶瑶. 肝细胞癌转化治疗方式[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 597-601.
[14] 王飞飞, 王光林, 孟泽松, 李保坤, 曹龙飞, 张娟, 周超熙, 丁源一, 王贵英. 敲低IMPDH1对结肠癌SW480、HT29细胞生物功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(08): 884-890.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要