切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2020, Vol. 09 ›› Issue (06) : 501 -506. doi: 10.3877/cma.j.issn.2095-3232.2020.06.001

所属专题: 文献

述评

肝内胆管癌异常脂质代谢研究进展
童焕军1, 汤朝晖1,(), 全志伟1   
  1. 1. 200092 上海交通大学医学院附属新华医院普通外科
  • 收稿日期:2020-09-10 出版日期:2020-12-10
  • 通信作者: 汤朝晖
  • 基金资助:
    国家自然科学基金(81772521); 上海交通大学医学院附属新华医院院级临床研究培育基金(17CSK06); 上海交通大学医学院多中心临床研究(DLY201807)

Research progress in abnormal lipid metabolism in intrahepatic cholangiocarcinoma

Huanjun Tong1, Zhaohui Tang1(), Zhiwei Quan1   

  • Received:2020-09-10 Published:2020-12-10
  • Corresponding author: Zhaohui Tang
引用本文:

童焕军, 汤朝晖, 全志伟. 肝内胆管癌异常脂质代谢研究进展[J]. 中华肝脏外科手术学电子杂志, 2020, 09(06): 501-506.

Huanjun Tong, Zhaohui Tang, Zhiwei Quan. Research progress in abnormal lipid metabolism in intrahepatic cholangiocarcinoma[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2020, 09(06): 501-506.

[1]
Nathan H, Pawlik TM, Wolfgang CL, et al. Trends in survival after surgery for cholangiocarcinoma: a 30-year population-based SEER database analysis[J]. J Gastrointest Surg, 2007, 11(11):1488-1496.
[2]
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism[J]. Cell Metab, 2016, 23(1):27-47.
[3]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5):646-674.
[4]
Tesfay L, Paul BT, Konstorum A, et al. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death[J]. Cancer Res, 2019, 79(20): 5355-5366.
[5]
Wang T, Fahrmann JF, Lee H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance[J]. Cell Metab, 2018, 27(1):136-150, e5.
[6]
Poulose N, Amoroso F, Steele RE, et al. Genetics of lipid metabolism in prostate cancer[J]. Nat Genet, 2018, 50(2):169-171.
[7]
Li L, Che L, Tharp KM, et al. Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans[J]. Hepatology, 2016, 63(6):1900-1913.
[8]
Sun B, Rong R, Jiang H, et al. Prostaglandin E2 receptor EP1 phosphorylate CREB and mediates MMP2 expression in human cholangiocarcinoma cells[J]. Mol Cell Biochem, 2013, 378(1/2): 195-203.
[9]
Hennequart M, Pilotte L, Cane S, et al. Constitutive IDO1 expression in human tumors is driven by cyclooxygenase-2 and mediates intrinsic immune resistance[J]. Cancer Immunol Res, 2017, 5(8): 695-709.
[10]
Jongthawin J, Techasen A, Loilome W, et al. Anti-inflammatory agents suppress the prostaglandin E2 production and migration ability of cholangiocarcinoma cell lines[J]. Asian Pac J Cancer Prev, 2012, 13 Suppl:47-51.
[11]
Yao L, Han C, Song K, et al. Omega-3 polyunsaturated fatty acids upregulate 15-PGDH expression in cholangiocarcinoma cells by inhibiting miR-26a/b expression[J]. Cancer Res, 2015, 75(7):1388-1398.
[12]
Lin CR, Chu TM, Luo A, et al. Omega-3 polyunsaturated fatty acids suppress metastatic features of human cholangiocarcinoma cells by suppressing twist[J]. J Nutr Biochem, 2019(74):108245.
[13]
Lim K, Han C, Xu L, et al. Cyclooxygenase-2-derived prostaglandin E2 activates beta-catenin in human cholangiocarcinoma cells: evidence for inhibition of these signaling pathways by omega 3 polyunsaturated fatty acids[J]. Cancer Res, 2008, 68(2):553-560.
[14]
Gül-Utku Ö, Karatay E, Ergül B, et al. The role of resolvin D1 in the differential diagnosis of the cholangiocarcinoma and benign biliary diseases[J]. Clin Lab, 2020, DOI: 10.7754/Clin.Lab.2020.200212[Epub ahead of print].
[15]
Mathema VB, Chaijaroenkul W, Karbwang J, et al. Growth inhibitory effect of beta-eudesmol on cholangiocarcinoma cells and its potential suppressive effect on heme oxygenase-1 production, STAT1/3 activation, and NF-κB downregulation[J]. Clin Exp Pharmacol Physiol, 2017, 44(11):1145-1154.
[16]
Yin DL, Liang YJ, Zheng TS, et al. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma[J]. Sci Rep, 2016(6):32167.
[17]
Liu R, Zhao R, Zhou X, et al. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2[J]. Hepatology, 2014, 60(3):908-918.
[18]
Liu R, Li X, Qiang X, et al. Taurocholate induces cyclooxygenase-2 expression via the sphingosine 1-phosphate receptor 2 in a human cholangiocarcinoma cell line[J]. J Biol Chem, 2015, 290(52):30988-31002.
[19]
Erice O, Labiano I, Arbelaiz A, et al. Differential effects of FXR or TGR5 activation in cholangiocarcinoma progression[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B):1335-1344.
[20]
Reich M, Deutschmann K, Sommerfeld A, et al. TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro[J]. Gut, 2016, 65(3):487-501.
[21]
Nie J, Zhang J, Wang L, et al. Adipocytes promote cholangiocarcinoma metastasis through fatty acid binding protein 4[J]. J Exp Clin Cancer Res, 2017, 36(1):183.
[22]
Hotamisligil GS, Bernlohr DA. Metabolic functions of FABPs--mechanisms and therapeutic implications[J]. Nat Rev Endocrinol, 2015, 11(10):592-605.
[23]
Nieman KM, Kenny HA, Penicka CV, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth[J]. Nat Med, 2011, 17(11):1498-1503.
[24]
Nakagawa R, Hiep NC, Ouchi H, et al. Expression of fatty-acid-binding protein 5 in intrahepatic and extrahepatic cholangiocarcinoma: the possibility of different energy metabolisms in anatomical location[J]. Med Mol Morphol, 2020, 53(1):42-49.
[25]
Jeong CY, Hah YS, Cho BI, et al. Fatty acid-binding protein 5 promotes cell proliferation and invasion in human intrahepatic cholangiocarcinoma[J]. Oncol Rep, 2012, 28(4):1283-1292.
[26]
Houthuijzen JM. For better or worse: FFAR1 and FFAR4 signaling in cancer and diabetes[J]. Mol Pharmacol, 2016, 90(6):738-743.
[27]
Serna-Marquez N, Diaz-Aragon R, Reyes-Uribe E, et al. Linoleic acid induces migration and invasion through FFAR4- and PI3K-/Akt-dependent pathway in MDA-MB-231 breast cancer cells[J]. Med Oncol, 2017, 34(6):111.
[28]
Fukushima K, Yamasaki E, Ishii S, et al. Different roles of GPR120 and GPR40 in the acquisition of malignant properties in pancreatic cancer cells[J]. Biochem Biophys Res Commun, 2015, 465(3):512-515.
[29]
Liu Z, Hopkins MM, Zhang Z, et al. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells[J]. J Pharmacol Exp Ther, 2015, 352(2):380-394.
[30]
Kita T, Kadochi Y, Takahashi K, et al. Diverse effects of G-protein-coupled free fatty acid receptors on the regulation of cellular functions in lung cancer cells[J]. Exp Cell Res, 2016, 342(2):193-199.
[31]
Meng FT, Huang M, Shao F, et al. Upregulated FFAR4 correlates with the epithelial-mesenchymal transition and an unfavorable prognosis in human cholangiocarcinoma[J]. Cancer Biomark, 2018, 23(3):353-361.
[32]
Honorat M, Falson P, Terreux R, et al. Multidrug resistance ABC transporter structure predictions by homology modeling approaches[J]. Curr Drug Metab, 2011, 12(3):268-277.
[33]
Reichert MC, Lammert F. ABCB4 gene aberrations in human liver disease: an evolving spectrum[J]. Semin Liver Dis, 2018, 38(4):299-307.
[34]
Iannelli F, Collino A, Sinha S, et al. Massive gene amplification drives paediatric hepatocellular carcinoma caused by bile salt export pump deficiency[J]. Nat Commun, 2014(5):3850.
[35]
Larbcharoensub N, Sornmayura P, Sirachainan E, et al. Prognostic value of ABCG2 in moderately and poorly differentiated intrahepatic cholangiocarcinoma[J]. Histopathology, 2011, 59(2):235-246.
[36]
Srimunta U, Sawanyawisuth K, Kraiklang R, et al. High expression of ABCC1 indicates poor prognosis in intrahepatic cholangiocarcinoma[J]. Asian Pac J Cancer Prev, 2012, 13 Suppl: 125-130.
[37]
Tepsiri N, Chaturat L, Sripa B, et al. Drug sensitivity and drug resistance profiles of human intrahepatic cholangiocarcinoma cell lines[J]. World J Gastroenterol, 2005, 11(18):2748-2753.
[38]
Liang Q, Liu H, Zhang T, et al. Serum metabolomics uncovering specific metabolite signatures of intra- and extrahepatic cholangiocarcinoma[J]. Mol Biosyst, 2016, 12(2):334-340.
[39]
Banales JM, Iñarrairaegui M, Arbelaiz A, et al. Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis[J]. Hepatology, 2019, 70(2):547-562.
[40]
Haznadar M, Diehl CM, Parker AL, et al. Urinary metabolites diagnostic and prognostic of intrahepatic cholangiocarcinoma[J]. Cancer Epidemiol Biomarkers Prev, 2019, 28(10):1704-1711.
[41]
Sharif AW, Williams HRT, Lampejo T, et al. Metabolic profiling of bile in cholangiocarcinoma using in vitro magnetic resonance spectroscopy[J]. HPB, 2010, 12(6):396-402.
[1] 周金龙, 刘俊杰, 谷昊. 淋巴结清扫对肝内胆管癌预后价值的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(02): 155-160.
[2] 范伟强, 林师佈, 孙传伟, 宋奇锋, 李望, 符誉, 陈艾. 不同切除范围的Bismuth-Corlette Ⅲ、Ⅳ型腹腔镜肝门部胆管癌手术临床对比分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 423-426.
[3] 宋铭杰, 韩青雷, 李佳隆, 邵英梅. 内镜下晚期肝外胆管恶性肿瘤消融治疗研究现况[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 340-342.
[4] 潘冰, 吕少诚, 赵昕, 李立新, 郎韧, 贺强. 淋巴结清扫数目对远端胆管癌胰十二指肠切除手术疗效的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 608-612.
[5] 田驹, 孙伯洋, 杨荣华, 赵向前. 术中意外发现肝外胆管绒毛管状腺瘤的外科处理经验:附两例报道并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 567-571.
[6] 李斌奎. 不可切除肝内胆管细胞癌的转化治疗[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 511-516.
[7] 陈雪岩, 孟兴凯. 肝门空肠吻合术在肝门部胆管癌根治术中的应用价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 440-443.
[8] 吴周宇, 周宝勇, 李明. 基于PSM分析腹腔镜肝门部胆管癌根治术安全性[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 384-388.
[9] 杨传鑫, 王伟, 王坚. 残余左肝管内乳头状黏液瘤一例报告[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 236-238.
[10] 王健东, 全志伟. 重视胆道恶性肿瘤化疗联合靶向免疫的综合治疗[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 125-130.
[11] 李卓群, 任冯刚, 王荣峰, 张东, 耿智敏, 吕毅, 仵正. 胆管癌局部治疗技术应用进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 153-156.
[12] 单季军, 李相成. 肝门部胆管癌术前减黄及其对手术安全性的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 157-161.
[13] 莫建涛, 杨沛泽, 曹瑞奇, 马清涌, 王铮, 仵正, 周灿灿. 基于生物信息学分析构建肝内胆管细胞癌患者铁死亡相关lncRNA预后模型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 185-189.
[14] 李杰, 任加强, 马坚, 王铮, 马清涌, 仵正. 血栓弹力图测定对远端胆管癌胰十二指肠切除术后出血的预测价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 211-215.
[15] 苏淼, 赵东强. 肝内胆管癌预后因素的研究进展[J]. 中华胃肠内镜电子杂志, 2023, 10(01): 62-66.
阅读次数
全文


摘要