切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2021, Vol. 10 ›› Issue (06): 629 -635. doi: 10.3877/cma.j.issn.2095-3232.2021.06.020

基础研究

miR-429在胰腺导管腺癌患者预后中的价值及作用机制
朱倩1, 陈怡然1, 侍超2, 沈晶尧2, 徐亮2, 应杰2, 胡立平2,()   
  1. 1. 430071 武汉大学中南医院肝胆胰外科
    2. 211700 江苏省淮安市盱眙县人民医院普通外科
  • 收稿日期:2021-08-20 出版日期:2021-09-23
  • 通信作者: 胡立平
  • 基金资助:
    国家自然科学青年科学基金(82002589); 武汉大学中南医院优博基金项目(ZNYB2019007); 武汉大学青年教师资助项目(2042020kf0145)

Value and mechanism of miR-429 in clinical prognosis of patients with pancreatic ductal adenocarcinoma

Qian Zhu1, Yiran Chen1, Chao Shi2, Jingyao Shen2, Liang Xu2, Jie Ying2, Liping Hu2,()   

  1. 1. Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
    2. Department of General Surgery, Xuyi People's Hospital, Huai'an 211700, China
  • Received:2021-08-20 Published:2021-09-23
  • Corresponding author: Liping Hu
目的

探讨miR-429在胰腺导管腺癌(PDAC)患者预后中的价值及作用机制。

方法

回顾性分析2015年6月至2019年8月在江苏盱眙县人民医院诊治的95例PDAC患者临床病理资料。患者均签署知情同意书,符合医学伦理学规定。其中男60例,女35例;年龄32~76岁,中位年龄61岁。实时荧光定量RT-PCR检测患者miR-429表达,分析miR-429表达与患者生存预后的关系。细胞实验采用人胰腺癌细胞系Bxpc-3和Panc-1,分别采用MTT法和Transwell法检测细胞增殖和迁移能力。免疫荧光染色检测上皮-间质转化(EMT)相关因子E-cadherin、N-cadherin和vimentin表达。两组miR-429相对表达量比较采用t检验,miR-429表达与PDAC患者临床病理特征的关系分析采用χ2检验。生存分析采用Kaplan-Meier法和Log-rank检验。

结果

PDAC患者肿瘤组织miR-429平均相对表达量为1.02±0.43,明显低于癌旁正常组织的2.35±0.27(t=-1.732,P<0.05)。miR-429表达与TNM分期和肿瘤血管侵犯相关(χ2=3.877,2.584;P<0.05)。miR-429低表达的PDAC患者总体生存率和无瘤生存率明显降低(χ2=2.874,3.106;P<0.05)。MTT法检测显示miR-429过表达明显抑制Bxpc-3和Panc-1胰腺癌细胞增殖,抑制miR-429表达则促进细胞增殖。Transwell实验结果显示,miR-429上调明显抑制Bxpc-3和Panc-1细胞的侵袭和迁移能力。免疫荧光染色检测显示,miR-429低表达组织中E-cadherin表达增强,而N-cadherin、vimentin表达降低。

结论

PDAC组织miR-429低表达,低表达与患者生存预后差相关。miR-429通过调控EMT过程在PDAC中发挥抑癌基因作用。

Objective

To evaluate the prognostic value and mechanism of miR-429 in patients with pancreatic ductal adenocarcinoma (PDAC).

Methods

Clinicopathological data of 95 PDAC patients admitted to Xuyi People's Hospital of Jiangsu province from June 2015 to August 2019 were retrospectively analyzed. The informed consents of all patients were obtained and the local ethical committee approval was received. Among them, 60 patients were male and 35 female, aged from 32 to 76 years, with a median age of 61 years. The expression level of miR-429 was detected by fluorescent quantitative RT-PCR. The relationship between miR-429 expression and survival and prognosis of the patients was analyzed. Human pancreatic cancer cell lines Bxpc-3 and Panc-1 were selected for cell experiment. The cell proliferation and migration capability was determined by MTT assay and Transwell chamber test. The expression levels of E-cadherin, N-cadherin and vimentin related to epithelial-mesenchymal transition (EMT) were detected by immunofluorescent staining. The relative expression level of miR-429 between two groups was compared by t test. The relationship between miR-429 expression and clinicopathological features of PDAC patients was analyzed by Chi-square test. Survival analysis was performed with Kaplan-Meier method and Log-rank test.

Results

The average relative expression level of miR-429 in tumor tissues of PDAC patients was 1.02±0.43, significantly lower than 2.35±0.27 in the adjacent normal tissues (t=-1.732, P<0.05). The expression level of miR-429 was correlated with TNM staging and tumor vascular invasion (χ2=3.877, 2.584; P<0.05). The overall survival and disease-free survival rates of PDAC patients with low expression of miR-429 were significantly decreased (χ2=2.874, 3.106; P<0.05). MTT assay revealed that miR-429 overexpression significantly inhibited the proliferation of Bxpc-3 and Panc-1 pancreatic cancer cells, whereas down-regulating miR-429 expression promoted cell proliferation. Up-regulation of miR-429 expression significantly inhibited the invasion and migration of Bxpc-3 and Panc-1 cells according to Transwell chamber test. The expression level of E-cadherin was up-regulated, whereas those of N-cadherin and vimentin were down-regulated in the tissues with low expression of miR-429 according to immunofluorescent staining.

Conclusions

miR-429 is lowly expressed in the PDAC tissues, which is associated with poor prognosis. miR-429 plays an anti-tumor role in PDAC patients by regulating the EMT process.

图1 胰腺导管腺癌患者Kaplan-Meier生存曲线
图2 miR-429对Bxpc-3和Panc-1胰腺癌细胞增殖的作用曲线注:示miR-429过表达显著抑制胰腺癌细胞增殖;NC为对照组
图3 细胞克隆形成实验检测miR-429对Bxpc-3胰腺癌细胞增殖的作用注:miR-429类似物抑制细胞克隆形成,其抑制物促进细胞克隆形成;NC为对照组
图4 Transwell实验检测miR-429在Bxpc-3胰腺癌细胞迁移中的作用注:miR-429类似物可抑制细胞迁移,而其抑制物促进细胞迁移;NC为对照组,*为P<0.05
图5 免疫荧光染色检测miR-429与EMT相关因子的关系注:miR-429低表达与E-cadherin高表达和vimentin低表达相关,而miR-429过表达可导致E-cadherin表达降低和vimentin表达上调;EMT为上皮-间质转化,NC为对照组
[1]
Kaissis G, Braren R. Pancreatic cancer detection and characterization-state of the art cross-sectional imaging and imaging data analysis[J]. Transl Gastroenterol Hepatol, 2019(4):35.
[2]
Scheufele F, Hartmann D, Friess H. Treatment of pancreatic cancer-neoadjuvant treatment in borderline resectable/locally advanced pancreatic cancer[J]. Transl Gastroenterol Hepatol, 2019(4):32.
[3]
Furuse J. Treatments for pancreatic cancer with oligometastasis[J]. Gan To Kagaku Ryoho, 2017, 44(10):827-830.
[4]
Liang H, Yu T, Han Y, et al. LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression[J]. Mol Cancer, 2018, 17(1):119.
[5]
Ding XM. MicroRNAs: regulators of cancer metastasis and epithelial-mesenchymal transition (EMT)[J]. Chin J Cancer, 2014, 33(3):140-147.
[6]
Chen L, Gibbons DL, Goswami S, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression[J]. Nat Commun, 2014(5): 5241.
[7]
Chen J, Wang L, Matyunina LV, et al. Overexpression of miR-429 induces mesenchymal-to-epithelial transition (MET) in metastatic ovarian cancer cells[J]. Gynecol Oncol, 2011, 121(1):200-205.
[8]
Kleeff J, Korc M, Apte M, et al. Pancreatic cancer[J]. Nat Rev Dis Primers, 2016(2):16022.
[9]
Velez-Serrano JF, Velez-Serrano D, Hernandez-Barrera V, et al. Prediction of in-hospital mortality after pancreatic resection in pancreatic cancer patients: a boosting approach via a population-based study using health administrative data[J]. PLoS One, 2017, 12(6):e0178757.
[10]
Miyazaki M, Yoshitomi H, Takano S, et al. Combined hepatic arterial resection in pancreatic resections for locally advanced pancreatic cancer[J]. Langenbecks Arch Surg, 2017, 402(3):447-456.
[11]
Brooks J, Fleischmann-Mundt B, Woller N, et al. Perioperative, spatiotemporally coordinated activation of T and NK cells prevents recurrence of pancreatic cancer[J]. Cancer Res, 2018, 78(2):475-488.
[12]
Ambe CM, Nguyen P, Centeno BA, et al. Multimodality management of "borderline besectable" pancreatic neuroendocrine tumors: report of a single-institution experience[J]. Cancer Control, 2017, 24(5): 1073274817729076.
[13]
Shi H, Li H, Zhen T, et al. hsa_circ_001653 implicates in the development of pancreatic ductal adenocarcinoma by regulating microRNA-377-mediated HOXC6 axis[J]. Mol Ther Nucleic Acids, 2020(20):252-264.
[14]
Oto J, Navarro S, Larsen AC, et al. MicroRNAs and neutrophil activation markers predict venous thrombosis in pancreatic ductal adenocarcinoma and distal extrahepatic cholangiocarcinoma[J]. Int J Mol Sci, 2020, 21(3): 840.
[15]
Fesler A, Ju J. Development of microRNA-based therapy for pancreatic cancer[J]. J Pancreatol, 2019, 2(4):147-151.
[16]
Wei H, Hu J, Pu J, et al. Long noncoding RNA HAGLROS promotes cell proliferation, inhibits apoptosis and enhances autophagy via regulating miR-5095/ATG12 axis in hepatocellular carcinoma cells[J]. Int Immunopharmacol, 2019(73):72-80.
[17]
Qiu M, Li T, Wang B, et al. miR-146a-5p regulated cell proliferation and apoptosis by targeting SMAD3 and SMAD4[J]. Protein Pept Lett, 2020, 27(5):411-418.
[18]
Chen HS, Lu AQ, Yang PY, et al. MicroRNA-28-5p regulates glioma cell proliferation, invasion and migration by targeting SphK1[J]. Eur Rev Med Pharmacol Sci, 2019, 23(15):6621-6628.
[19]
Xiong Y, Wang Y, Wang L, et al. MicroRNA-30b targets snail to impede epithelial-mesenchymal transition in pancreatic cancer stem cells[J]. J Cancer, 2018, 9(12):2147-2159.
[20]
Peng L, Liu Z, Xiao J, et al. MicroRNA-148a suppresses epithelial-mesenchymal transition and invasion of pancreatic cancer cells by targeting Wnt10b and inhibiting the Wnt/beta-catenin signaling pathway[J]. Oncol Rep, 2017, 38(1):301-308.
[21]
Stroese AJ, Ullerich H, Koehler G, et al. Circulating microRNA-99 family as liquid biopsy marker in pancreatic adenocarcinoma[J]. J Cancer Res Clin Oncol, 2018, 144(12):2377-2390.
[22]
Su Z, Jiang G, Chen J, et al. MicroRNA-429 inhibits cancer cell proliferation and migration by targeting AKT1 in renal cell carcinoma[J]. Mol Clin Oncol, 2020, 12(1):75-80.
[23]
Liu D, Xia P, Diao D, et al. MiRNA-429 suppresses the growth of gastric cancer cells in vitro[J]. J Biomed Res, 2012, 26(5):389-393.
[24]
Mo JS, Han SH, Yun KJ, et al. MicroRNA 429 regulates the expression of CHMP5 in the inflammatory colitis and colorectal cancer cells[J]. Inflamm Res, 2018, 67(11/12):985-996.
[25]
Yin C, Lin X, Wang Y, et al. FAM83D promotes epithelial-mesenchymal transition, invasion and cisplatin resistance through regulating the AKT/mTOR pathway in non-small-cell lung cancer[J]. Cell Oncol, 2020, 43(3):395-407.
[26]
Saberianpour S, Rezaie Nezhad Zamani A, Karimi A, et al. Hollow alginate-poly-L-lysine-alginate microspheres promoted an epithelial-mesenchymal transition in human colon adenocarcinoma cells[J]. Adv Pharm Bull, 2020, 10(1):141-145.
[27]
Lin L, Li Y, Liu M, et al. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation[J]. Aging, 2020, 12(2):1685-1703.
[28]
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3):178-196.
[1] 李晓红, 张安度, 韩慧娜, 孔德友, 张舰, 段学娟, 孔洁, 曲福印, 杜凯邺, 张钧, 刘志坤. 乳腺癌同侧锁骨上淋巴结转移患者行手术联合放射治疗的预后分析[J]. 中华乳腺病杂志(电子版), 2022, 16(01): 14-22.
[2] 付柏杨, 陈晰, 梁文龙, 王瑶, 张建国. 微RNA对乳腺癌细胞代谢的影响[J]. 中华乳腺病杂志(电子版), 2022, 16(01): 34-38.
[3] 程慧, 李妍雨, 张蓓, 成杰, 张艳玲. 微小RNA-195靶向趋化因子5抑制滋养细胞增殖、迁移和侵袭及其机制研究[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 165-174.
[4] 高博文, 罗宇明, 孔瑶, 张丁文, 堐益垚, 杨家彬, 贺兴, 李文滨. circRNA-CHD2通过miR-30e-3p/MDM2/TP53轴促进胰腺癌侵袭转移[J]. 中华普通外科学文献(电子版), 2022, 16(01): 14-19.
[5] 聂阿娜, 尚培中, 苗建军, 王金, 李伟. 甲状腺乳头状癌SLeX和Gal-3表达的临床病理意义[J]. 中华普通外科学文献(电子版), 2021, 15(06): 432-436.
[6] 李永宁, 李英, 罗德荣, 朱昌毫, 刘鹏, 刘松柏, 喻超, 潘耀振. 移动医疗在胰腺癌患者全程管理中应用的研究[J]. 中华普外科手术学杂志(电子版), 2022, 16(03): 343-346.
[7] 欧雷, 罗之谦, 陈旺文, 龙凯军. 胃癌患者No.14v淋巴结转移或微转移与临床病理特征及预后关系研究[J]. 中华普外科手术学杂志(电子版), 2022, 16(03): 279-282.
[8] 王小为, 雷海, 余书蓉, 缪世茜, 杨丽华. 乳腺癌患者术后远处转移及其不良结局的危险因素[J]. 中华普外科手术学杂志(电子版), 2022, 16(02): 162-165.
[9] 李卓林, 贾如雪, 吴亚婷, 张胜行, 王水良. 肿瘤转移的分子机制及靶向干预研究新进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 51-58.
[10] 闫士放, 吴圣波, 张新晨. 胰腺囊性肿瘤诊断与治疗[J]. 中华肝脏外科手术学电子杂志, 2022, 11(02): 123-127.
[11] 张瑜, 郑楷炼, 李欲晓. 磁共振小视野扩散加权成像在局部进展期胰腺癌疗效预测中的价值[J]. 中华肝脏外科手术学电子杂志, 2022, 11(02): 139-143.
[12] 王娟娟, 张锐, 吴文睿, 刘超, 曾弘. 结直肠癌大胆管转移病理特征及其与术后复发的关系[J]. 中华肝脏外科手术学电子杂志, 2022, 11(02): 176-181.
[13] 汤永昌, 袁峰, 梁豪, 钟昭众, 熊志勇, 曹明波, 任昱朋, 李宇轩, 姚志成, 邓美海. HBx对HBV相关性肝癌增殖和迁移能力的影响及其机制[J]. 中华肝脏外科手术学电子杂志, 2022, 11(02): 198-202.
[14] 邬杰忠, 柯春连, 陈少宏, 刘波, 姚志成. circZKSCAN1抑制肝癌细胞侵袭转移的机制[J]. 中华肝脏外科手术学电子杂志, 2022, 11(01): 92-97.
[15] 蒋世铭, 陈勇. 腹腔镜胰腺中段切除术两例(附视频)[J]. 中华肝脏外科手术学电子杂志, 2022, 11(01): 98-100.
阅读次数
全文


摘要