[1] |
Liu S, Li W, Shi H, et al. Low-dose scanning technology combined with low-concentration contrast material in renal computed tomography angiography (CTA): a preliminary study[J]. Med Sci Monit, 2017(23):4351-4359.
|
[2] |
Malviya KK, Verma A, Nayak AK, et al. Unraveling variations in celiac trunk and hepatic artery by CT angiography to aid in surgeries of upper abdominal region[J]. Diagnostics, 2021, 11(12):2262.
|
[3] |
Verhagen MV, Dikkers R, de Kleine RH, et al. Assessment of hepatic artery anatomy in pediatric liver transplant recipients: MR angiography versus CT angiography[J]. Pediatr Transplant, 2021, 25(4):e14002.
|
[4] |
Zhou Z, Chen H, Wei W, et al. Low kilovoltage peak (kVp) with an adaptive statistical iterative reconstruction algorithm in computed tomography urography: evaluation of image quality and radiation dose[J]. Am J Transl Res, 2016, 8(9):3883-3892.
|
[5] |
Saade C, Deeb IA, Mohamad M, et al. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know[J]. Diagn Interv Radiol, 2016, 22(2):116-124.
|
[6] |
陈平, 宋芹霞, 史恒峰, 等. 双源CT三低扫描模式在头颈部血管造影中的应用价值[J]. 安徽医学, 2017, 38(11):1435-1439.
|
[7] |
Sun Y, Hua Y, Wang M, et al. Evaluation of a high concentrated contrast media injection protocol in combination with low tube current for dose reduction in coronary computed tomography angiography: a randomized, two-center prospective study[J]. Acad Radiol, 2017, 24(12):1482-1490.
|
[8] |
Geyer LL, Schoepf UJ, Meinel FG, et al. State of the art: iterative CT reconstruction techniques[J]. Radiology, 2015, 276(2):339-357.
|
[9] |
Laurent G, Villani N, Hossu G, et al. Full model-based iterative reconstruction (MBIR) in abdominal CT increases objective image quality, but decreases subjective acceptance[J]. Eur Radiol, 2019, 29(8):4016-4025.
|
[10] |
Laurent G, Villani N, Hossu G, et al. Full model-based iterative reconstruction (MBIR) in abdominal CT increases objective image quality, but decreases subjective acceptance[J]. Eur Radiol, 2019, 29(8):4016-4025.
|
[11] |
Jensen CT, Liu X, Tamm EP, et al. Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience[J]. AJR Am J Roentgenol, 2020, 215(1):50-57.
|
[12] |
Ren Z, Zhang X, Hu Z, et al. Reducing radiation dose and improving image quality in CT portal venography using 80 kV and adaptive statistical iterative reconstruction-V in slender patients[J]. Acad Radiol, 2020, 27(2):233-243.
|
[13] |
Kulkarni NM, Uppot RN, Eisner BH, et al. Radiation dose reduction at multidetector CT with adaptive statistical iterative reconstruction for evaluation of urolithiasis: how low can we go?[J]. Radiology, 2012, 265(1):158-166.
|
[14] |
刘义军, 刘爱连, 方鑫, 等. 70 kVp超低辐射剂量和低碘摄入量在低体质量指数患者腹部CTA的可行性[J]. 中国医学影像技术, 2017, 33(3):473-477.
|
[15] |
Liu B, Gao S, Chang Z, et al. Lower extremity CT angiography at80 kVp using iterative model reconstruction[J]. Diagn Interv Imaging, 2018, 99(9):561-568.
|
[16] |
Kim SY, Cho JY, Lee J, et al. Low-tube-voltage CT urography using low-concentration-iodine contrast media and iterative reconstruction: a multi-institutional randomized controlled trial for comparison with conventional CT urography[J]. Korean J Radiol, 2018, 19(6):1119-1129.
|
[17] |
Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists[J]. Radiographics, 2017, 37(7):2113-2131.
|
[18] |
Jensen CT, Liu X, Tamm EP, et al. Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience[J]. AJR Am J Roentgenol, 2020, 215(1):50-57.
|
[19] |
Arndt C, Güttler F, Heinrich A, et al. Deep learning CT image reconstruction in clinical practice[J]. Rofo, 2021, 193(3):252-261.
|
[20] |
Willemink MJ, Noël PB. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence[J]. Eur Radiol, 2019, 29(5):2185-2195.
|
[21] |
Kim JH, Yoon HJ, Lee E, et al. Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise[J]. Korean J Radiol, 2021, 22(1):131-138.
|