切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2022, Vol. 11 ›› Issue (04) : 373 -379. doi: 10.3877/cma.j.issn.2095-3232.2022.04.010

临床研究

DLIR算法结合前置ASIR-V技术在过重患者门静脉成像中的应用
孟占鳌1, 张悦1, 蒋伟1, 郭月飞1, 郭焯欣1, 张可1,()   
  1. 1. 510630 广州,中山大学附属第三医院放射科
  • 收稿日期:2022-03-29 出版日期:2022-08-10
  • 通信作者: 张可
  • 基金资助:
    广州市科技计划项目(202007030007)

Application of DLIR algorithm combined with pre-ASIR-V in CT portal venography for overweight patients

Zhan'ao Meng1, Yue Zhang1, Wei Jiang1, Yuefei Guo1, Zhuoxin Guo1, Ke Zhang1,()   

  1. 1. Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2022-03-29 Published:2022-08-10
  • Corresponding author: Ke Zhang
引用本文:

孟占鳌, 张悦, 蒋伟, 郭月飞, 郭焯欣, 张可. DLIR算法结合前置ASIR-V技术在过重患者门静脉成像中的应用[J]. 中华肝脏外科手术学电子杂志, 2022, 11(04): 373-379.

Zhan'ao Meng, Yue Zhang, Wei Jiang, Yuefei Guo, Zhuoxin Guo, Ke Zhang. Application of DLIR algorithm combined with pre-ASIR-V in CT portal venography for overweight patients[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2022, 11(04): 373-379.

目的

探讨深度学习图像重建(DLIR)算法结合前置自适应迭代重建-V(ASIR-V)技术在过重患者门静脉成像(CTPV)中的应用价值。

方法

本前瞻性研究对象为2021年6月至9月在中山大学附属第三医院接受腹部增强CTPV检查的50例患者。其中男31例,女19例;年龄19~74岁,中位年龄56岁;BMI>25 kg/m2。患者均签署患者知情同意书,符合医学伦理学规定。比较前置50%ASIR-V技术(开启)和前置0%ASIR-V(关闭)时有效辐射剂量(ED)。采用60%ASIR-V、80%ASIR-V、DLIR-M(中等级别)和DLIR-H(高等级别)4种算法分别对患者门静脉期数据进行薄层重建。图像质量的客观评价指标包括门静脉CT值的标准差(SD)值、信噪比(SNR)和对比噪声比(CNR),主观评价由两名放射科医师对重建图像质量进行双盲法评分。前置ASIR-V开启前后ED比较采用t检验。不同算法的SD、SNR、CNR等客观评价指标比较采用单因素方差分析;主观图像质量评分比较采用Kruskal-Wallis检验,采用Kappa检验分析两名放射科医师的主观图像质量评分的一致性。

结果

前置ASIR-V关闭和开启后平均ED分别为(11.1±1.4)、(7.6±1.1)mSv,ED降低32%(t=14.01,P<0.05)。对于门静脉主干,DLIR-H组SD最小,SNR和CNR最大(P<0.05)。对于门静脉分支,80%ASIR-V组SD最小,SNR最大;DLIR-H组CNR最大(P<0.05)。在所有算法重建的图像中,DLIR-H组门静脉重建图像质量的主观评分最高(P<0.05)。两名放射科医师对60%ASIR-V、80%ASIR-V、DLIR-M和DLIR-H算法的门静脉重建图像质量的主观评分一致性较好(κ=0.810,0.556,0.705,0.676;P<0.05);对门静脉整体和分支图像质量的主观评分一致性亦较好(κ=0.661,0.959;P<0.05)。

结论

在过重患者门静脉造影中,前置ASIR-V技术可明显降低ED;DLIR算法可显著降低噪声,不改变其纹理,相比ASIR-V算法可获得更好的门静脉期图像,其中高级别DLIR算法重建图像最佳。

Objective

To evaluate the application value of deep learning image reconstruction (DLIR) algorithm combined with pre-adaptive statistical iterative reconstruction-V (ASIR-V) in CT portal venography (CTPV) for overweight patients.

Methods

50 patients receiving abdominal enhanced CTPV in the Third Affiliated Hospital of Sun Yat-sen University from June to September 2021 were enrolled in this prospective study. Among them, 31 patients were male and 19 female, aged from 19 to 74 years, with a median age of 56 years and BMI>25 kg/m2. The informed consents of all patients were obtained and the local ethical committee approval was received. The effective dose (ED) was compared between 50% pre-ASIR-V (turned on) and 0% pre-ASIR-V (turned off). The data of portal venous phase were thin-slice reconstructed with 4 algorithms 60%ASIR-V, 80%ASIR-V, DLIR-M (middle level) and DLIR-H (high level), respectively. The objective evaluation parameters of image quality included standard deviation (SD) of CT value of portal vein, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The subjective assessment of reconstructed images was performed with double-blind method by two radiologists. The ED before and after turning on pre-ASIR-V was statistically compared by t test. The SD, SNR, CNR and other objective evaluation parameters of image quality among different algorithms were compared by one-way ANOVA. The subjective scores were compared by Kruskal-Wallis test. The consistency of subjective scores of image quality between two radiologists was analyzed by Kappa test.

Results

The average ED was (11.1±1.4) and (7.6±1.1) mSv before and after turning on pre-ASIR-V, respectively, which was decreased by 32% (t=14.01, P<0.05). For the main portal vein, the SD was the lowest, the SNR and CNR were the highest in DLIR-H group (P<0.05). For the portal vein branches, the SD was the lowest and the SNR was the highest in 80%ASIR-V group, and the CNR was the highest in DLIR-H group (P<0.05). Among all the images reconstructed by different algorithms, the subjective score was the highest in DLIR-H group (P<0.05). The consistency of scores of two radiologists was comparatively high for the portal vein images reconstructed with 60%ASIR-V, 80%ASIR-V, DLIR-M and DLIR-H algorithms (κ=0.810, 0.556, 0.705, 0.676; P<0.05). Comparatively high consistency was also observed in the subjective scores for the images of portal vein system and portal vein branches (κ=0.661, 0.959; P<0.5).

Conclusions

In the CTPV for overweight patients, pre-ASIR-V can significantly reduce the ED. DLIR algorithm can significantly reduce the noise without changing the texture. Compared with ASIR-V algorithm, DLIR algorithm can obtain better portal vein phase images, especially the DLIR-H algorithm.

表1 ASIR-V技术开启前后辐射剂量比较(±s
表2 不同算法的门静脉主干及分支客观图像质量指标比较
表3 不同算法的门静脉重建图像质量主观评分比较
表4 两名医师对不同算法的门静脉重建图像质量主观评分和一致性Kappa检验
图1 一例患者门静脉MIP和VR重建图注:左边4组为MIP重建,右边4组为VR重建;相同窗宽窗位下,60%ASIR-V、80%ASIR-V图像在门静脉主干边缘模糊,有颗粒感,细小分支血管模糊,有蜡状伪影,斑点状外观;而DLIR-M、DLIR-H门静脉主干清晰锐利,无颗粒感,细小分支血管纹理清楚,无蜡状伪影;MIP为最大强度投影,VR为容积再现,ASIR-V为自适应统计迭代重建-V,DLIR-M为中等级别深度学习图像重建,DLIR-H为高等级别深度学习图像重建
[1]
Zhao Y, Wu Y, Zuo Z, et al. Application of low concentration contrast medium in spectral CT imaging for CT portal venography[J]. J Xray Sci Technol, 2017, 25(1):135-143.
[2]
Benz DC, Fuchs TA, Gräni C, et al. Head-to-head comparison of adaptive statistical and model-based iterative reconstruction algorithms for submillisievert coronary CT angiography[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(2):193-198.
[3]
Jensen CT, Liu X, Tamm EP, et al. Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience[J]. AJR Am J Roentgenol, 2020, 215(1):50-57.
[4]
Kim I, Kang H, Yoon HJ, et al. Deep learning-based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V)[J]. Neuroradiology, 2021, 63(6):905-912.
[5]
Park C, Choo KS, Kim JH, et al. Image quality and radiation dose in CT venography using model-based iterative reconstruction at 80 kVp versus adaptive statistical iterative reconstruction-V at 70 kVp[J]. Korean J Radiol, 2019, 20(7):1167-1175.
[6]
Goodenberger MH, Wagner-Bartak NA, Gupta S, et al. Computed tomography image quality evaluation of a new iterative reconstruction algorithm in the abdomen (adaptive statistical iterative reconstruction-V) a comparison with model-based iterative reconstruction, adaptive statistical iterative reconstruction, and filtered back projection reconstructions[J]. J Comput Assist Tomogr, 2018, 42(2):184-190.
[7]
Laurent G, Villani N, Hossu G, et al. Full model-based iterative reconstruction (MBIR) in abdominal CT increases objective image quality, but decreases subjective acceptance[J]. Eur Radiol, 2019, 29(8):4016-4025.
[8]
Kim JH, Yoon HJ, Lee E, et al. Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise[J]. Korean J Radiol, 2021, 22(1):131-138.
[9]
Kwon H, Cho J, Oh J, et al. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique[J]. Br J Radiol, 2015, 88(1054):20150463.
[10]
Ren Z, Zhang X, Hu Z, et al. Reducing radiation dose and improving image quality in CT portal venography using 80 kV and adaptive statistical iterative reconstruction-V in slender patients[J]. Acad Radiol, 2020, 27(2):233-243.
[11]
Ma CL, Chen XX, Lei YX, et al. Clinical value of dual-energy spectral imaging with adaptive statistical iterative reconstruction for reducing contrast medium dose in CT portal venography: in comparison with standard 120-kVp imaging protocol[J]. Br J Radiol, 2016, 89(1062):20151022.
[12]
Kulkarni NM, Uppot RN, Eisner BH, et al. Radiation dose reduction at multidetector CT with adaptive statistical iterative reconstruction for evaluation of urolithiasis: how low can we go?[J]. Radiology, 2012, 265(1):158-166.
[13]
Mileto A, Guimaraes LS, McCollough CH, et al. State of the art in abdominal CT: the limits of iterative reconstruction algorithms[J]. Radiology, 2019, 293(3):491-503.
[14]
Akagi M, Nakamura Y, Higaki T, et al. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT[J]. Eur Radiol, 2019, 29(11):6163-6171.
[15]
Willemink MJ, Noël PB. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence[J]. Eur Radiol, 2019, 29(5):2185-2195.
[16]
Sun Y, Hua Y, Wang M, et al. Evaluation of a high concentrated contrast media injection protocol in combination with low tube current for dose reduction in coronary computed tomography angiography: a randomized, two-center prospective study[J]. Acad Radiol, 2017, 24(12):1482-1490.
[17]
Chang KJ, Collins S, Li B, et al. Optimizing CT technique to reduce radiation dose: effect of changes in kVp, iterative reconstruction, and noise index on dose and noise in a human cadaver[J]. Radiol Phys Technol, 2017, 10(2):180-188.
[18]
Fält T, Söderberg M, Hörberg L, et al. Simulated dose reduction for abdominal CT with filtered back projection technique: effect on liver lesion detection and characterization[J]. AJR Am J Roentgenol, 2019, 212(1):84-93.
[19]
Racine D, Becce F, Viry A, et al. Task-based characterization ofa deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: a phantom study[J]. Phys Med, 2020(76):28-37.
[20]
Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists[J]. Radiographics, 2017, 37(7):2113-2131.
[21]
Greffier J, Hamard A, Pereira F, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT:a phantom study[J]. Eur Radiol, 2020, 30(7):3951-3959.
[1] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[2] 张可, 张悦, 蒋伟, 郭月飞, 郭焯欣, 孟占鳌. 深度学习算法结合三低技术在上腹部动脉CT血管造影中的应用[J]. 中华肝脏外科手术学电子杂志, 2022, 11(05): 469-475.
[3] 梅碧, 罗倩, 赵佳, 张蕾, 吴晓明. 双源CT能谱纯化单能量技术在评估喙锁韧带中的价值[J]. 中华肩肘外科电子杂志, 2022, 10(02): 135-140.
阅读次数
全文


摘要