[1] |
|
[2] |
Bhatia R, Ravulapati S, Befeler A, et al. Hepatocellular carcinoma with bone metastases: incidence, prognostic significance, and management-single-center experience[J]. J Gastrointest Cancer, 2017, 48(4): 321-325. DOI: 10.1007/s12029-017-9998-6.
|
[3] |
Harding JJ, Abu-Zeinah G, Chou JF, et al. Frequency, morbidity, and mortality of bone metastases in advanced hepatocellular carcinoma[J]. J Natl Compr Canc Netw, 2018, 16(1): 50-58. DOI: 10.6004/jnccn.2017.7024.
|
[4] |
Guo X, Xu Y, Wang X, et al. Advanced hepatocellular carcinoma with bone metastases: prevalence, associated factors, and survival estimation[J]. Med Sci Monit, 2019, 25: 1105-1112. DOI: 10.12659/MSM.913470.
|
[5] |
Yuan X, Zhuang M, Zhu X, et al. Emerging perspectives of bone metastasis in hepatocellular carcinoma[J]. Front Oncol, 2022, 12: 943866. DOI: 10.3389/fonc.2022.943866.
|
[6] |
Clézardin P, Coleman R, Puppo M, et al. Bone metastasis: mechanisms, therapies, and biomarkers[J]. Physiol Rev, 2021, 101(3): 797-855. DOI: 10.1152/physrev.00012.2019.
|
[7] |
Lu Y, Hu JG, Lin XJ, et al. Bone metastases from hepatocellular carcinoma: clinical features and prognostic factors[J]. Hepatobiliary Pancreat Dis Int, 2017, 16(5): 499-505. DOI: 10.1016/S1499-3872(16)60173-X.
|
[8] |
Fang JH, Zhang ZJ, Shang LR, et al. Hepatoma cell-secreted exosomal microRNA-103 increases vascular permeability and promotes metastasis by targeting junction proteins[J]. Hepatology, 2018, 68(4): 1459-1475. DOI: 10.1002/hep.29920.
|
[9] |
Zhou Y, Ren H, Dai B, et al. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts[J]. J Exp Clin Cancer Res, 2018, 37(1): 324. DOI: 10.1186/s13046-018-0965-2.
|
[10] |
Giannelli G, Koudelkova P, Dituri F, et al. Role of epithelial to mesenchymal transition in hepatocellular carcinoma[J]. J Hepatol, 2016, 65(4): 798-808. DOI: 10.1016/j.jhep.2016.05.007.
|
[11] |
Zhou P, Liu Y, Wu G, et al. LincRNA PRNCR1 activates the Wnt/β-catenin pathway to drive the deterioration of hepatocellular carcinoma via regulating miR-411-3p/ZEB1 axis[J]. Biotechnol Genet Eng Rev, 2024, 40(4): 4809-4824. DOI: 10.1080/02648725.2023.2216966.
|
[12] |
Ning J, Ye Y, Bu D, et al. Imbalance of TGF-β1/BMP-7 pathways induced by M2-polarized macrophages promotes hepatocellular carcinoma aggressiveness[J]. Mol Ther, 2021, 29(6): 2067-2087. DOI: 10.1016/j.ymthe.2021.02.016.
|
[13] |
Man J, Zhou W, Zuo S, et al. TANGO1 interacts with NRTN to promote hepatocellular carcinoma progression by regulating the PI3K/AKT/mTOR signaling pathway[J]. Biochem Pharmacol, 2023, 213: 115615. DOI: 10.1016/j.bcp.2023.115615.
|
[14] |
|
[15] |
Zhang L, Niu H, Ma J, et al. The molecular mechanism of LncRNA34a-mediated regulation of bone metastasis in hepatocellular carcinoma[J]. Mol Cancer, 2019, 18(1): 120. DOI: 10.1186/s12943-019-1044-9.
|
[16] |
Ono T, Hayashi M, Sasaki F, et al. RANKL biology: bone metabolism, the immune system, and beyond[J]. Inflamm Regen, 2020, 40: 2. DOI: 10.1186/s41232-019-0111-3.
|
[17] |
Sasaki A, Ishikawa K, Haraguchi N, et al. Receptor activator of nuclear factor-κB ligand (RANKL) expression in hepatocellular carcinoma with bone metastasis[J]. Ann Surg Oncol, 2007, 14(3): 1191-1199. DOI: 10.1245/s10434-006-9277-4.
|
[18] |
Jin J, Chung JO, Chung MY, et al. Clinical characteristics, causes and survival in 115 cancer patients with parathyroid hormone related protein-mediated hypercalcemia[J]. J Bone Metab, 2017, 24(4): 249-255. DOI: 10.11005/jbm.2017.24.4.249.
|
[19] |
Kim JM, Jeong D, Kang HK, et al. Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation[J]. Cell Physiol Biochem, 2007, 20(6): 935-946. DOI: 10.1159/000110454.
|
[20] |
Tiedemann K, Hussein O, Komarova SV. Role of altered metabolic microenvironment in osteolytic metastasis[J]. Front Cell Dev Biol, 2020, 8: 435. DOI: 10.3389/fcell.2020.00435.
|
[21] |
Kezic A, Popovic L, Lalic K. mTOR inhibitor therapy and metabolic consequences: where do we stand?[J]. Oxid Med Cell Longev, 2018, 2018: 2640342. DOI: 10.1155/2018/2640342.
|
[22] |
Amin MB, Greene FL, Edge SB, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging[J]. CA Cancer J Clin, 2017, 67(2): 93-99. DOI: 10.3322/caac.21388.
|
[23] |
Reig M, Forner A, Rimola J, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update[J]. J Hepatol, 2022, 76(3): 681-693. DOI: 10.1016/j.jhep.2021.11.018.
|
[24] |
Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma[J]. N Engl J Med, 2020, 382(20): 1894-1905. DOI: 10.1056/NEJMoa1915745.
|
[25] |
Ren Z, Xu J, Bai Y, et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2-3 study[J]. Lancet Oncol, 2021, 22(7): 977-990. DOI: 10.1016/S1470-2045(21)00252-7.
|
[26] |
Long X, Zhang L, Wang WQ, et al. Response of scalp and skull metastasis to anti-PD-1 antibody combined with regorafenib treatment in a sorafenib-resistant hepatocellular carcinoma patient and a literature review[J]. Onco Targets Ther, 2022, 15: 703-716. DOI: 10.2147/OTT.S365652.
|
[27] |
Saâda-Bouzid E, Defaucheux C, Karabajakian A, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma[J]. Ann Oncol, 2017, 28(7): 1605-1611. DOI: 10.1093/annonc/mdx178.
|
[28] |
Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade[J]. N Engl J Med, 2018, 378(2): 158-168. DOI: 10.1056/NEJMra1703481.
|
[29] |
Llovet JM, Kudo M, Cheng AL, et al. Lenvatinib (len) plus pembrolizumab (pembro) for the first-line treatment of patients (pts) with advanced hepatocellular carcinoma (HCC): phase 3 LEAP-002 study[J]. J Clin Oncol, 2019, 37(15_suppl): TPS4152. DOI: 10.1200/jco.2019.37.15_suppl.tps4152.
|
[30] |
Kelley RK, Greten TF. Hepatocellular carcinoma - origins and outcomes[J]. N Engl J Med, 2021, 385(3): 280-282. DOI: 10.1056/NEJMcibr2106594.
|
[31] |
Southcott D, Awan A, Ghate K, et al. Practical update for the use of bone-targeted agents in patients with bone metastases from metastatic breast cancer or castration-resistant prostate cancer[J]. Curr Oncol, 2020, 27(4): 220-224. DOI: 10.3747/co.27.6631.
|
[32] |
Mao K, Yan Y, Zhang J, et al. The impact of liver resection on survival outcomes of hepatocellular carcinoma patients with extrahepatic metastases: a propensity score matching study[J]. Cancer Med, 2018, 7(9): 4475-4484. DOI: 10.1002/cam4.1738.
|
[33] |
Lee JI, Kim JK, Kim DY, et al. Prognosis of hepatocellular carcinoma patients with extrahepatic metastasis and the controllability of intrahepatic lesions[J]. Clin Exp Metastasis, 2014, 31(4): 475-482. DOI: 10.1007/s10585-014-9641-x.
|
[34] |
|
[35] |
Elazab S, Elkalla H, Zahi M. Palliative radiotherapy to asymptomatic bone metastasis: is it beneficial or not? Single institution experience[J]. Middle East J Cancer, 2021, 12(3): 422-428. DOI: 10.30476/mejc.2021.84106.1201.
|
[36] |
Chen L, Wang Z, Song S, et al. The efficacy of radiotherapy in the treatment of hepatocellular carcinoma with distant organ metastasis[J]. J Oncol, 2021, 2021: 5190611. DOI: 10.1155/2021/5190611.
|