[1] |
Chen J, Chen H, Zhang T, et al. Burden of pancreatic cancer along with attributable risk factors in China from 1990 to 2019, and projections until 2030[J]. Pancreatology, 2022, 22(5): 608-618. DOI: 10.1016/j.pan.2022.04.011.
|
[2] |
Winter JM, Brennan MF, Tang LH, et al. Survival after resection of pancreatic adenocarcinoma: results from a single institution over three decades[J]. Ann Surg Oncol, 2012, 19(1): 169-175. DOI: 10.1245/s10434-011-1900-3.
|
[3] |
Salem AI, Alfi M, Winslow E, et al. Has survival following pancreaticoduodenectomy for pancreas adenocarcinoma improved over time?[J]. J Surg Oncol, 2015, 112(6): 643-649. DOI: 10.1002/jso.24048.
|
[4] |
Leinwand J, Miller G. Regulation and modulation of antitumor immunity in pancreatic cancer[J]. Nat Immunol, 2020, 21(10): 1152-1159. DOI: 10.1038/s41590-020-0761-y.
|
[5] |
Zhang Y, Zhang G, Zeng Z, et al. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy[J]. Chem Soc Rev, 2022, 51(2): 566-593. DOI: 10.1039/d1cs00525a.
|
[6] |
Luo X, Hu D, Gao D, et al. Metabolizable near-infrared-Ⅱ nanoprobes for dynamic imaging of deep-seated tumor-associated macrophages in pancreatic cancer[J]. ACS Nano, 2021, 15(6): 10010-10024. DOI: 10.1021/acsnano.1c01608.
|
[7] |
Kang H, Shamim M, Yin X, et al. Tumor-associated immune-cell-mediated tumor-targeting mechanism with NIR-Ⅱ fluorescence imaging[J]. Adv Mater, 2022, 34(8): e2106500. DOI: 10.1002/adma.202106500.
|
[8] |
Li Q, Chen K, Huang W, et al. Minimally invasive photothermal ablation assisted by laparoscopy as an effective preoperative neoadjuvant treatment for orthotopic hepatocellular carcinoma[J]. Cancer Lett, 2021, 496: 169-178. DOI: 10.1016/j.canlet.2020.09.024.
|
[9] |
Li D, Ushakova EV, Rogach AL, et al. Optical properties of carbon dots in the deep-red to near-infrared region are attractive for biomedical applications[J]. Small, 2021, 17(43): e2102325. DOI: 10.1002/smll.202102325.
|
[10] |
Chen K, Li Q, Zhao X, et al. Biocompatible melanin based theranostic agent for in vivo detection and ablation of orthotopic micro-hepatocellular carcinoma[J]. Biomater Sci, 2020, 8(15): 4322-4333. DOI: 10.1039/d0bm00825g.
|
[11] |
Chen X, Zeh HJ, Kang R, et al. Cell death in pancreatic cancer: from pathogenesis to therapy[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(11): 804-823. DOI: 10.1038/s41575-021-00486-6.
|
[12] |
Shi Y, Gao W, Lytle NK, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring[J]. Nature, 2019, 569(7754): 131-135. DOI: 10.1038/s41586-019-1130-6.
|
[13] |
Chen PT, Wu T, Wang P, et al. Pancreatic cancer detection on CT scans with deep learning: a nationwide population-based study[J]. Radiology, 2023, 306(1): 172-182. DOI: 10.1148/radiol.220152.
|
[14] |
Messmann H, Endlicher E, Gelbmann CM, et al. Fluorescence endoscopy and photodynamic therapy[J]. Dig Liver Dis, 2002, 34(10): 754-761. DOI: 10.1016/s1590-8658(02)80028-7.
|
[15] |
Li H, Kim Y, Jung H, et al. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy[J]. Chem Soc Rev, 2022, 51(21): 8957-9008. DOI: 10.1039/d2cs00722c.
|
[16] |
Zhu S, Tian R, Antaris AL, et al. Near-infrared-Ⅱ molecular dyes for cancer imaging and surgery[J]. Adv Mater, 2019, 31(24): e1900321. DOI: 10.1002/adma.201900321.
|
[17] |
Ang MJY, Chan SY, Goh YY, et al. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics[J]. Adv Drug Deliv Rev, 2021, 178: 113907. DOI: 10.1016/j.addr.2021.113907.
|
[18] |
Ovais M, Mukherjee S, Pramanik A, et al. Designing stimuli-responsive upconversion nanoparticles that exploit the tumor microenvironment[J]. Adv Mater, 2020, 32(22): e2000055. DOI: 10.1002/adma.202000055.
|
[19] |
Zhang RR, Schroeder AB, Grudzinski JJ, et al. Beyond the margins: real-time detection of cancer using targeted fluorophores[J]. Nat Rev Clin Oncol, 2017, 14(6): 347-364. DOI: 10.1038/nrclinonc.2016.212.
|
[20] |
Chen Y, Xue L, Zhu Q, et al. Recent advances in second near-infrared region (NIR-Ⅱ) fluorophores and biomedical applications[J]. Front Chem, 2021, 9: 750404. DOI: 10.3389/fchem.2021.750404.
|
[21] |
|
[22] |
Gong F, Yang N, Wang X, et al. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics[J]. Nano Today, 2020, 32: 100851. DOI: 10.1016/j.nantod.2020.100851.
|
[23] |
Zhen W, An S, Wang S, et al. Precise subcellular organelle targeting for boosting endogenous-stimuli-mediated tumor therapy[J]. Adv Mater, 2021, 33(51): e2101572. DOI: 10.1002/adma.202101572.
|
[24] |
Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769): 392-396. DOI: 10.1038/s41586-019-1456-0.
|
[25] |
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
|
[26] |
Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer-clinical challenges and opportunities[J]. Nat Rev Clin Oncol, 2020, 17(9): 527-540. DOI: 10.1038/s41571-020-0363-5.
|
[27] |
|
[28] |
|
[29] |
Salas-Benito D, Pérez-Gracia JL, Ponz-Sarvisé M, et al. Paradigms on immunotherapy combinations with chemotherapy[J]. Cancer Discov, 2021, 11(6): 1353-1367. DOI: 10.1158/2159-8290.CD-20-1312.
|
[30] |
Strobel O, Neoptolemos J, Jäger D, et al. Optimizing the outcomes of pancreatic cancer surgery[J]. Nat Rev Clin Oncol, 2019, 16(1): 11-26. DOI: 10.1038/s41571-018-0112-1.
|
[31] |
Zhou B, Xu JW, Cheng YG, et al. Early detection of pancreatic cancer: where are we now and where are we going?[J]. Int J Cancer, 2017, 141(2): 231-241. DOI: 10.1002/ijc.30670.
|
[32] |
Kasumova GG, Charles Conway W, Tseng JF. The role of venous and arterial resection in pancreatic cancer surgery[J]. Ann Surg Oncol, 2018, 25(1): 51-58. DOI: 10.1245/s10434-016-5676-3.
|
[33] |
Lafaro KJ, Melstrom LG. The paradoxical web of pancreatic cancer tumor microenvironment[J]. Am J Pathol, 2019, 189(1): 44-57. DOI: 10.1016/j.ajpath.2018.09.009.
|
[34] |
Dai M, Chen S, Teng X, et al. KRAS as a key oncogene in the clinical precision diagnosis and treatment of pancreatic cancer[J]. J Cancer, 2022, 13(11): 3209-3220. DOI: 10.7150/jca.76695.
|
[35] |
Tao J, Yang G, Zhou W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer[J]. J Hematol Oncol, 2021, 14(1): 14. DOI: 10.1186/s13045-020-01030-w.
|
[36] |
Helms E, Kathrina Onate M, Sherman MH. Fibroblast heterogeneity in the pancreatic tumor microenvironment[J]. Cancer Discov, 2020, 10(5): 648-656. DOI: 10.1158/2159-8290.CD-19-1353.
|
[37] |
Jia M, Zhang D, Zhang C, et al. Nanoparticle-based delivery systems modulate the tumor microenvironment in pancreatic cancer for enhanced therapy[J]. J Nanobiotechnology, 2021, 19(1): 384. DOI: 10.1186/s12951-021-01134-6.
|
[38] |
Falcomatà C, Bärthel S, Schneider G, et al. Context-specific determinants of the immunosuppressive tumor microenvironment in pancreatic cancer[J]. Cancer Discov, 2023, 13(2): 278-297. DOI: 10.1158/2159-8290.CD-22-0876.
|
[39] |
Huang X, Ding L, Liu X, et al. Regulation of tumor microenvironment for pancreatic cancer therapy[J]. Biomaterials, 2021, 270: 120680. DOI: 10.1016/j.biomaterials.2021.120680.
|
[40] |
Wang X, Teh CSC, Ishizawa T, et al. Consensus guidelines for the use of fluorescence imaging in hepatobiliary surgery[J]. Ann Surg, 2021, 274(1): 97-106. DOI: 10.1097/SLA.0000000000004718.
|
[41] |
Li D, Chen X, Wang D, et al. Synchronously boosting type-I photodynamic and photothermal efficacies via molecular manipulation for pancreatic cancer theranostics in the NIR-Ⅱ window[J]. Biomaterials, 2022, 283: 121476. DOI: 10.1016/j.biomaterials.2022.121476.
|
[42] |
Geng X, Gao D, Hu D, et al. Active-targeting NIR-Ⅱ phototheranostics in multiple tumor models using platelet-camouflaged nanoprobes[J]. ACS Appl Mater Interfaces, 2020, 12(50): 55624-55637. DOI: 10.1021/acsami.0c16872.
|
[43] |
Teng T, Lin R, Lin Z, et al. Photothermal augment stromal disrupting effects for enhanced Abraxane synergy chemotherapy in pancreatic cancer PDX mode[J]. Biomater Sci, 2020, 8(12): 3278-3285. DOI: 10.1039/d0bm00549e.
|
[44] |
Kang H, Shamim M, Yin X, et al. Tumor-associated immune-cell-mediated tumor-targeting mechanism with NIR-Ⅱ fluorescence imaging[J]. Adv Mater, 2022, 34(8): e2106500. DOI: 10.1002/adma.202106500.
|
[45] |
Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci USA, 2013, 110(50): 20212-20217. DOI: 10.1073/pnas.1320318110.
|
[46] |
Pellico J, Gawne PJ, de Rosales RTM. Radiolabelling of nanomaterials for medical imaging and therapy[J]. Chem Soc Rev, 2021, 50(5): 3355-3423. DOI: 10.1039/D0CS00384K.
|
[47] |
Zhen Z, Tang W, Chen H, et al. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors[J]. ACS Nano, 2013, 7(6): 4830-4837. DOI: 10.1021/nn305791q.
|
[48] |
Hu Y, Chi C, Wang S, et al. A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer[J]. Adv Mater, 2017, 29(33): 1700448. DOI: 10.1002/adma.201700448.
|
[49] |
Pham KY, Wang LC, Hsieh CC, et al. 1550 nm excitation-responsive upconversion nanoparticles to establish dual-photodynamic therapy against pancreatic tumors[J]. J Mater Chem B, 2021, 9(3): 694-709. DOI: 10.1039/d0tb02655g.
|
[50] |
|
[51] |
Rani R, Malik P, Dhania S, et al. Recent advances in mesoporous silica nanoparticle-mediated drug delivery for breast cancer treatment[J]. Pharmaceutics, 2023, 15(1): 227. DOI: 10.3390/pharmaceutics15010227.
|
[52] |
Choi J, Sun IC, Sook Hwang H, et al. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment[J]. Adv Drug Deliv Rev, 2022, 186: 114344. DOI: 10.1016/j.addr.2022.114344.
|
[53] |
Liu Y, Wu X, Chen F, et al. Modulating cancer-stroma crosstalk by a nanoparticle-based photodynamic method to pave the way for subsequent therapies[J]. Biomaterials, 2022, 289: 121813. DOI: 10.1016/j.biomaterials.2022.121813.
|
[54] |
Obaid G, Bano S, Thomsen H, et al. Remediating desmoplasia with EGFR-targeted photoactivable multi-inhibitor liposomes doubles overall survival in pancreatic cancer[J]. Adv Sci, 2022, 9(24): e2104594. DOI: 10.1002/advs.202104594.
|
[55] |
Shi Y, Zhang J, Huang H, et al. Fe-doped polyoxometalate as acid-aggregated nanoplatform for NIR-Ⅱ photothermal-enhanced chemodynamic therapy[J]. Adv Healthc Mater, 2020, 9(9): e2000005. DOI: 10.1002/adhm.202000005.
|
[56] |
Ji M, Xu M, Zhang W, et al. Structurally well-defined Au@Cu 2- x S core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency[J]. Adv Mater, 2016, 28(16): 3094-3101. DOI: 10.1002/adma.201503201.
|
[57] |
Zhang F, Han X, Hu Y, et al. Interventional photothermal therapy enhanced brachytherapy: a new strategy to fight deep pancreatic cancer[J]. Adv Sci, 2019, 6(5): 1801507. DOI: 10.1002/advs.201801507.
|
[58] |
Chen K, Yin B, Luo Q, et al. Endoscopically guided interventional photodynamic therapy for orthotopic pancreatic ductal adenocarcinoma based on NIR-Ⅱ fluorescent nanoparticles[J]. Theranostics, 2023, 13(13): 4469-4481. DOI: 10.7150/thno.84164.
|
[59] |
Nguyen QT, Tsien RY. Fluorescence-guided surgery with live molecular navigation: a new cutting edge[J]. Nat Rev Cancer, 2013, 13(9): 653-662. DOI: 10.1038/nrc3566.
|
[60] |
Hussain T, Nguyen QT. Molecular imaging for cancer diagnosis and surgery[J]. Adv Drug Deliv Rev, 2014, 66: 90-100. DOI: 10.1016/j.addr.2013.09.007.
|
[61] |
韩梓瑜. Peptide-22-Cy7在胰腺癌光声成像及手术导航中的实验研究[D]. 广州: 南方医科大学, 2018.
|
[62] |
Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows[J]. Nat Biomed Eng, 2020, 4(3): 259-271. DOI: 10.1038/s41551-019-0494-0.
|
[63] |
Newton AD, Predina JD, Shin MH, et al. Intraoperative near-infrared imaging can identify neoplasms and aid in real-time margin assessment during pancreatic resection[J]. Ann Surg, 2019, 270(1): 12-20. DOI: 10.1097/SLA.0000000000003201.
|
[64] |
Muilenburg KM, Isder CC, Radhakrishnan P, et al. Mucins as contrast agent targets for fluorescence-guided surgery of pancreatic cancer[J]. Cancer Lett, 2023, 561: 216150. DOI: 10.1016/j.canlet.2023.216150.
|