切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 14 ›› Issue (05) : 693 -699. doi: 10.3877/cma.j.issn.2095-3232.2025.05.006

专家论坛

近红外荧光成像技术在胰腺癌中的应用
廖艳, 成伟()   
  1. 414000 岳阳,岳阳市人民医院(湖南师范大学附属岳阳医院)胆胰脾外科
  • 收稿日期:2025-04-20 出版日期:2025-10-10
  • 通信作者: 成伟
  • 基金资助:
    湖南省研究生科研创新项目(CX20220525)

Application of near-infrared fluorescence imaging in pancreatic cancer

Yan Liao, Wei Cheng()   

  1. Department of Biliary, Pancreatic and Splenic Surgery, Yueyang People's Hospital (Yueyang Hospital Affiliated to Hunan Normal University), Yueyang 414000, China
  • Received:2025-04-20 Published:2025-10-10
  • Corresponding author: Wei Cheng
引用本文:

廖艳, 成伟. 近红外荧光成像技术在胰腺癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 693-699.

Yan Liao, Wei Cheng. Application of near-infrared fluorescence imaging in pancreatic cancer[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 14(05): 693-699.

胰腺癌是高度恶性肿瘤之一,手术切除仍然是胰腺癌患者获得治愈机会和长期生存的唯一有效方法,但胰腺癌总体的预后依旧很差,胰腺癌5年生存率不足13%,主要原因在于其早期难以发现。如果能够早期可视化检查胰腺肿瘤,实现胰腺癌的早期诊断,是胰腺癌患者获得长期生存的决定因素。近红外荧光成像是外科手术中实现术中导航的关键技术之一。随着近红外二区(NIR-Ⅱ)光学生物成像理论的日趋成熟,NIR-Ⅱ荧光成像技术成为临床手术导航领域的一大研究热点。尽管近年来技术不断进步,但仍有一系列现实问题。本文详细综述了近红外荧光成像在胰腺癌中的进展,为胰腺癌的准确诊断和治疗提供新的思路。

Pancreatic cancer is one of the highly malignant tumors. Surgical resection remains the only effective treatment for patients with pancreatic cancer, saving the chance of cure and long-term survival. However, the overall prognosis of pancreatic cancer patients is extremely poor, and the 5-year survival rate of pancreatic cancer is less than 13%, mainly because it is difficult to be detected during the early stage. Early visualization of pancreatic tumors and early diagnosis of pancreatic cancer are the decisive factors for patients with pancreatic cancer to obtain long-term survival. Near-infrared fluorescence imaging is one of the key technologies to realize intraoperative navigation. In recent years, with gradual maturity of near-infrared-Ⅱ optical biological imaging theory, near-infrared-Ⅱ fluorescence imaging technology has become a research hotspot in the field of clinical surgical navigation. Despite of persistent technological progress in recent years, a series of practical problems remain unresolved. In this article, the progress in near-infrared fluorescence imaging in pancreatic cancer was reviewed, aiming to provide novel idea for precise diagnosis and treatment of pancreatic cancer.

[1]
Chen J, Chen H, Zhang T, et al. Burden of pancreatic cancer along with attributable risk factors in China from 1990 to 2019, and projections until 2030[J]. Pancreatology, 2022, 22(5): 608-618. DOI: 10.1016/j.pan.2022.04.011.
[2]
Winter JM, Brennan MF, Tang LH, et al. Survival after resection of pancreatic adenocarcinoma: results from a single institution over three decades[J]. Ann Surg Oncol, 2012, 19(1): 169-175. DOI: 10.1245/s10434-011-1900-3.
[3]
Salem AI, Alfi M, Winslow E, et al. Has survival following pancreaticoduodenectomy for pancreas adenocarcinoma improved over time?[J]. J Surg Oncol, 2015, 112(6): 643-649. DOI: 10.1002/jso.24048.
[4]
Leinwand J, Miller G. Regulation and modulation of antitumor immunity in pancreatic cancer[J]. Nat Immunol, 2020, 21(10): 1152-1159. DOI: 10.1038/s41590-020-0761-y.
[5]
Zhang Y, Zhang G, Zeng Z, et al. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy[J]. Chem Soc Rev, 2022, 51(2): 566-593. DOI: 10.1039/d1cs00525a.
[6]
Luo X, Hu D, Gao D, et al. Metabolizable near-infrared-Ⅱ nanoprobes for dynamic imaging of deep-seated tumor-associated macrophages in pancreatic cancer[J]. ACS Nano, 2021, 15(6): 10010-10024. DOI: 10.1021/acsnano.1c01608.
[7]
Kang H, Shamim M, Yin X, et al. Tumor-associated immune-cell-mediated tumor-targeting mechanism with NIR-Ⅱ fluorescence imaging[J]. Adv Mater, 2022, 34(8): e2106500. DOI: 10.1002/adma.202106500.
[8]
Li Q, Chen K, Huang W, et al. Minimally invasive photothermal ablation assisted by laparoscopy as an effective preoperative neoadjuvant treatment for orthotopic hepatocellular carcinoma[J]. Cancer Lett, 2021, 496: 169-178. DOI: 10.1016/j.canlet.2020.09.024.
[9]
Li D, Ushakova EV, Rogach AL, et al. Optical properties of carbon dots in the deep-red to near-infrared region are attractive for biomedical applications[J]. Small, 2021, 17(43): e2102325. DOI: 10.1002/smll.202102325.
[10]
Chen K, Li Q, Zhao X, et al. Biocompatible melanin based theranostic agent for in vivo detection and ablation of orthotopic micro-hepatocellular carcinoma[J]. Biomater Sci, 2020, 8(15): 4322-4333. DOI: 10.1039/d0bm00825g.
[11]
Chen X, Zeh HJ, Kang R, et al. Cell death in pancreatic cancer: from pathogenesis to therapy[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(11): 804-823. DOI: 10.1038/s41575-021-00486-6.
[12]
Shi Y, Gao W, Lytle NK, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring[J]. Nature, 2019, 569(7754): 131-135. DOI: 10.1038/s41586-019-1130-6.
[13]
Chen PT, Wu T, Wang P, et al. Pancreatic cancer detection on CT scans with deep learning: a nationwide population-based study[J]. Radiology, 2023, 306(1): 172-182. DOI: 10.1148/radiol.220152.
[14]
Messmann H, Endlicher E, Gelbmann CM, et al. Fluorescence endoscopy and photodynamic therapy[J]. Dig Liver Dis, 2002, 34(10): 754-761. DOI: 10.1016/s1590-8658(02)80028-7.
[15]
Li H, Kim Y, Jung H, et al. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy[J]. Chem Soc Rev, 2022, 51(21): 8957-9008. DOI: 10.1039/d2cs00722c.
[16]
Zhu S, Tian R, Antaris AL, et al. Near-infrared-Ⅱ molecular dyes for cancer imaging and surgery[J]. Adv Mater, 2019, 31(24): e1900321. DOI: 10.1002/adma.201900321.
[17]
Ang MJY, Chan SY, Goh YY, et al. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics[J]. Adv Drug Deliv Rev, 2021, 178: 113907. DOI: 10.1016/j.addr.2021.113907.
[18]
Ovais M, Mukherjee S, Pramanik A, et al. Designing stimuli-responsive upconversion nanoparticles that exploit the tumor microenvironment[J]. Adv Mater, 2020, 32(22): e2000055. DOI: 10.1002/adma.202000055.
[19]
Zhang RR, Schroeder AB, Grudzinski JJ, et al. Beyond the margins: real-time detection of cancer using targeted fluorophores[J]. Nat Rev Clin Oncol, 2017, 14(6): 347-364. DOI: 10.1038/nrclinonc.2016.212.
[20]
Chen Y, Xue L, Zhu Q, et al. Recent advances in second near-infrared region (NIR-Ⅱ) fluorophores and biomedical applications[J]. Front Chem, 2021, 9: 750404. DOI: 10.3389/fchem.2021.750404.
[21]
Su Y, Yu B, Wang S, et al. NIR-Ⅱ bioimaging of small organic molecule[J]. Biomaterials, 2021, 271: 120717. DOI: 10.1016/j.biomaterials.2021.120717.
[22]
Gong F, Yang N, Wang X, et al. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics[J]. Nano Today, 2020, 32: 100851. DOI: 10.1016/j.nantod.2020.100851.
[23]
Zhen W, An S, Wang S, et al. Precise subcellular organelle targeting for boosting endogenous-stimuli-mediated tumor therapy[J]. Adv Mater, 2021, 33(51): e2101572. DOI: 10.1002/adma.202101572.
[24]
Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769): 392-396. DOI: 10.1038/s41586-019-1456-0.
[25]
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[26]
Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer-clinical challenges and opportunities[J]. Nat Rev Clin Oncol, 2020, 17(9): 527-540. DOI: 10.1038/s41571-020-0363-5.
[27]
Mizrahi JD, Surana R, Valle JW, et al. Pancreatic cancer[J]. Lancet, 2020, 395(10242): 2008-2020. DOI: 10.1016/s0140-6736(20)30974-0.
[28]
Cox TR. The matrix in cancer[J]. Nat Rev Cancer, 2021, 21(4): 217-238. DOI: 10.1038/s41568-020-00329-7.
[29]
Salas-Benito D, Pérez-Gracia JL, Ponz-Sarvisé M, et al. Paradigms on immunotherapy combinations with chemotherapy[J]. Cancer Discov, 2021, 11(6): 1353-1367. DOI: 10.1158/2159-8290.CD-20-1312.
[30]
Strobel O, Neoptolemos J, Jäger D, et al. Optimizing the outcomes of pancreatic cancer surgery[J]. Nat Rev Clin Oncol, 2019, 16(1): 11-26. DOI: 10.1038/s41571-018-0112-1.
[31]
Zhou B, Xu JW, Cheng YG, et al. Early detection of pancreatic cancer: where are we now and where are we going?[J]. Int J Cancer, 2017, 141(2): 231-241. DOI: 10.1002/ijc.30670.
[32]
Kasumova GG, Charles Conway W, Tseng JF. The role of venous and arterial resection in pancreatic cancer surgery[J]. Ann Surg Oncol, 2018, 25(1): 51-58. DOI: 10.1245/s10434-016-5676-3.
[33]
Lafaro KJ, Melstrom LG. The paradoxical web of pancreatic cancer tumor microenvironment[J]. Am J Pathol, 2019, 189(1): 44-57. DOI: 10.1016/j.ajpath.2018.09.009.
[34]
Dai M, Chen S, Teng X, et al. KRAS as a key oncogene in the clinical precision diagnosis and treatment of pancreatic cancer[J]. J Cancer, 2022, 13(11): 3209-3220. DOI: 10.7150/jca.76695.
[35]
Tao J, Yang G, Zhou W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer[J]. J Hematol Oncol, 2021, 14(1): 14. DOI: 10.1186/s13045-020-01030-w.
[36]
Helms E, Kathrina Onate M, Sherman MH. Fibroblast heterogeneity in the pancreatic tumor microenvironment[J]. Cancer Discov, 2020, 10(5): 648-656. DOI: 10.1158/2159-8290.CD-19-1353.
[37]
Jia M, Zhang D, Zhang C, et al. Nanoparticle-based delivery systems modulate the tumor microenvironment in pancreatic cancer for enhanced therapy[J]. J Nanobiotechnology, 2021, 19(1): 384. DOI: 10.1186/s12951-021-01134-6.
[38]
Falcomatà C, Bärthel S, Schneider G, et al. Context-specific determinants of the immunosuppressive tumor microenvironment in pancreatic cancer[J]. Cancer Discov, 2023, 13(2): 278-297. DOI: 10.1158/2159-8290.CD-22-0876.
[39]
Huang X, Ding L, Liu X, et al. Regulation of tumor microenvironment for pancreatic cancer therapy[J]. Biomaterials, 2021, 270: 120680. DOI: 10.1016/j.biomaterials.2021.120680.
[40]
Wang X, Teh CSC, Ishizawa T, et al. Consensus guidelines for the use of fluorescence imaging in hepatobiliary surgery[J]. Ann Surg, 2021, 274(1): 97-106. DOI: 10.1097/SLA.0000000000004718.
[41]
Li D, Chen X, Wang D, et al. Synchronously boosting type-I photodynamic and photothermal efficacies via molecular manipulation for pancreatic cancer theranostics in the NIR-Ⅱ window[J]. Biomaterials, 2022, 283: 121476. DOI: 10.1016/j.biomaterials.2022.121476.
[42]
Geng X, Gao D, Hu D, et al. Active-targeting NIR-Ⅱ phototheranostics in multiple tumor models using platelet-camouflaged nanoprobes[J]. ACS Appl Mater Interfaces, 2020, 12(50): 55624-55637. DOI: 10.1021/acsami.0c16872.
[43]
Teng T, Lin R, Lin Z, et al. Photothermal augment stromal disrupting effects for enhanced Abraxane synergy chemotherapy in pancreatic cancer PDX mode[J]. Biomater Sci, 2020, 8(12): 3278-3285. DOI: 10.1039/d0bm00549e.
[44]
Kang H, Shamim M, Yin X, et al. Tumor-associated immune-cell-mediated tumor-targeting mechanism with NIR-Ⅱ fluorescence imaging[J]. Adv Mater, 2022, 34(8): e2106500. DOI: 10.1002/adma.202106500.
[45]
Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci USA, 2013, 110(50): 20212-20217. DOI: 10.1073/pnas.1320318110.
[46]
Pellico J, Gawne PJ, de Rosales RTM. Radiolabelling of nanomaterials for medical imaging and therapy[J]. Chem Soc Rev, 2021, 50(5): 3355-3423. DOI: 10.1039/D0CS00384K.
[47]
Zhen Z, Tang W, Chen H, et al. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors[J]. ACS Nano, 2013, 7(6): 4830-4837. DOI: 10.1021/nn305791q.
[48]
Hu Y, Chi C, Wang S, et al. A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer[J]. Adv Mater, 2017, 29(33): 1700448. DOI: 10.1002/adma.201700448.
[49]
Pham KY, Wang LC, Hsieh CC, et al. 1550 nm excitation-responsive upconversion nanoparticles to establish dual-photodynamic therapy against pancreatic tumors[J]. J Mater Chem B, 2021, 9(3): 694-709. DOI: 10.1039/d0tb02655g.
[50]
王吉荣. 基于铁死亡—化疗协同治疗的胰腺癌靶向脂质介孔二氧化硅纳米递送系统的构建及体内外抗肿瘤活性研究[D]. 上海: 中国人民解放军海军军医大学, 2023. DOI: 10.26998/d.cnki.gjuyu.2023.000263.
[51]
Rani R, Malik P, Dhania S, et al. Recent advances in mesoporous silica nanoparticle-mediated drug delivery for breast cancer treatment[J]. Pharmaceutics, 2023, 15(1): 227. DOI: 10.3390/pharmaceutics15010227.
[52]
Choi J, Sun IC, Sook Hwang H, et al. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment[J]. Adv Drug Deliv Rev, 2022, 186: 114344. DOI: 10.1016/j.addr.2022.114344.
[53]
Liu Y, Wu X, Chen F, et al. Modulating cancer-stroma crosstalk by a nanoparticle-based photodynamic method to pave the way for subsequent therapies[J]. Biomaterials, 2022, 289: 121813. DOI: 10.1016/j.biomaterials.2022.121813.
[54]
Obaid G, Bano S, Thomsen H, et al. Remediating desmoplasia with EGFR-targeted photoactivable multi-inhibitor liposomes doubles overall survival in pancreatic cancer[J]. Adv Sci, 2022, 9(24): e2104594. DOI: 10.1002/advs.202104594.
[55]
Shi Y, Zhang J, Huang H, et al. Fe-doped polyoxometalate as acid-aggregated nanoplatform for NIR-Ⅱ photothermal-enhanced chemodynamic therapy[J]. Adv Healthc Mater, 2020, 9(9): e2000005. DOI: 10.1002/adhm.202000005.
[56]
Ji M, Xu M, Zhang W, et al. Structurally well-defined Au@Cu2- x S core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency[J]. Adv Mater, 2016, 28(16): 3094-3101. DOI: 10.1002/adma.201503201.
[57]
Zhang F, Han X, Hu Y, et al. Interventional photothermal therapy enhanced brachytherapy: a new strategy to fight deep pancreatic cancer[J]. Adv Sci, 2019, 6(5): 1801507. DOI: 10.1002/advs.201801507.
[58]
Chen K, Yin B, Luo Q, et al. Endoscopically guided interventional photodynamic therapy for orthotopic pancreatic ductal adenocarcinoma based on NIR-Ⅱ fluorescent nanoparticles[J]. Theranostics, 2023, 13(13): 4469-4481. DOI: 10.7150/thno.84164.
[59]
Nguyen QT, Tsien RY. Fluorescence-guided surgery with live molecular navigation: a new cutting edge[J]. Nat Rev Cancer, 2013, 13(9): 653-662. DOI: 10.1038/nrc3566.
[60]
Hussain T, Nguyen QT. Molecular imaging for cancer diagnosis and surgery[J]. Adv Drug Deliv Rev, 2014, 66: 90-100. DOI: 10.1016/j.addr.2013.09.007.
[61]
韩梓瑜. Peptide-22-Cy7在胰腺癌光声成像及手术导航中的实验研究[D]. 广州: 南方医科大学, 2018.
[62]
Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows[J]. Nat Biomed Eng, 2020, 4(3): 259-271. DOI: 10.1038/s41551-019-0494-0.
[63]
Newton AD, Predina JD, Shin MH, et al. Intraoperative near-infrared imaging can identify neoplasms and aid in real-time margin assessment during pancreatic resection[J]. Ann Surg, 2019, 270(1): 12-20. DOI: 10.1097/SLA.0000000000003201.
[64]
Muilenburg KM, Isder CC, Radhakrishnan P, et al. Mucins as contrast agent targets for fluorescence-guided surgery of pancreatic cancer[J]. Cancer Lett, 2023, 561: 216150. DOI: 10.1016/j.canlet.2023.216150.
[1] 聂生军, 王钰, 王毅, 鲜小庆, 马生成. 复方倍他米松局部注射联合光动力疗法治疗小型瘢痕疙瘩的临床疗效观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 404-410.
[2] 华彩凤, 高娟, 夏亚芳, 王进进, 王頔. 阴道黏膜免疫与人乳头瘤病毒16/18感染对宫颈低级别上皮内瘤变患者艾拉-光动力疗法疗效的影响[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(02): 96-103.
[3] 高彬, 阿曼塔依·努尔塔依, 宁江红, 邵英梅. 胆管癌的光动力治疗[J/OL]. 中华普通外科学文献(电子版), 2024, 18(01): 76-80.
[4] 董思帆, 安仕琪, 刘起帆, 王楚风, 蒋安. 光动力疗法在晚期胆管癌中应用研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 536-542.
[5] 郑秉礼, 彭洁, 孟塬. KRAS基因突变对可切除胰腺癌临床预后的影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 456-462.
[6] 颜军, 周强, 郭诗翔. 海德堡三角清扫在胰腺癌外科治疗中应用的系统评价[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 449-455.
[7] 刘翔, 刘军桂, 张涛, 金奎, 郭宇, 雷磊, 段伟宏. 胰腺癌动脉受侵的类型及手术策略研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 442-448.
[8] 韩沁颖, 高磊, 何普毅, 王云鹏, 王转芳, 何丽娟, 刘犇, 许博, 胡继科, 蒲唯高, 陈昊. ERCP 联合SpyGlass 内镜下射频消融+光动力疗法+胆道支架置入综合治疗在晚期胆管癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 262-269.
[9] 董思帆, 安仕琪, 刘起帆, 王楚风, 蒋安. 光动力疗法在晚期胆管癌姑息性治疗中的安全性和疗效Meta 分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 68-73.
[10] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
[11] 孟煜凡, 李永政, 樊知遥, 展翰翔. 瘤内微生物在胰腺癌发病和演进中的作用机制及研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 577-582.
[12] 王天福, 王刚. 自身免疫性胰腺炎诊治现状[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 492-497.
[13] 楚海强, 杨远游, 任刚. 胰腺癌放射治疗联合其他治疗方法的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 392-396.
[14] 李林宇, 崔世超, 杨晓晖, 曹艺巍, 林存智. 630 nm激光联合血卟啉衍生物治疗晚期支气管肺癌的近期临床疗效分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 133-138.
[15] 吴子龙, 吴冰, 袁开盛, 胡瑞翔, 杨华, 王存川. 肥胖与胰腺疾病研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 213-219.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?