[1] |
Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
|
[2] |
Cusi K, Isaacs S, Barb D, et al. American association of clinical endocrinology clinical practice guideline for the diagnosis and management of nonalcoholic fatty liver disease in primary care and endocrinology clinical settings: co-sponsored by the American association for the study of liver diseases (AASLD)[J]. Endocr Pract, 2022, 28(5): 528-562. DOI: 10.1016/j.eprac.2022.03.010.
|
[3] |
El-Kassas M, Awad A, Elbadry M, et al. Tailored model of care for patients with metabolic dysfunction-associated steatotic liver disease[J]. Semin Liver Dis, 2024, 44(1): 54-68. DOI: 10.1055/a-2253-9181.
|
[4] |
|
[5] |
Ajmera V, Kim BK, Yang K, et al. Liver stiffness on magnetic resonance elastography and the MEFIB index and liver-related outcomes in nonalcoholic fatty liver disease: a systematic review and meta-analysis of individual participants[J]. Gastroenterology, 2022, 163(4): 1079-1089. e5. DOI: 10.1053/j.gastro.2022.06.073.
|
[6] |
Llovet JM, Willoughby CE, Singal AG, et al. Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(8): 487-503. DOI: 10.1038/s41575-023-00754-7.
|
[7] |
Tilg H, Adolph TE, Moschen AR. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: revisited after a decade[J]. Hepatology, 2021, 73(2): 833-842. DOI: 10.1002/hep.31518.
|
[8] |
Pourali G, Hosseini ZS, Maftooh M, et al. Therapeutic potential of herbal medicine against non-alcoholic fatty liver disease[J]. Curr Drug Targets, 2023, 24(4): 300-319. DOI: 10.2174/1389450124666230113150116.
|
[9] |
Hong J, Shin WK, Lee JW, et al. Associations of serum vitamin D level with sarcopenia, non-alcoholic fatty liver disease (NAFLD), and sarcopenia in NAFLD among people aged 50 years and older: the Korea national health and nutrition examination survey IV-V[J]. Metab Syndr Relat Disord, 2022, 20(4): 210-218. DOI: 10.1089/met.2021.0106.
|
[10] |
Ishido S, Tamaki N, Takahashi Y, et al. Risk of cardiovascular disease in lean patients with nonalcoholic fatty liver disease[J]. BMC Gastroenterol, 2023, 23(1): 211. DOI: 10.1186/s12876-023-02848-7.
|
[11] |
Estes C, Razavi H, Loomba R, et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease[J]. Hepatology, 2018, 67(1): 123-133. DOI: 10.1002/hep.29466.
|
[12] |
Vetrano E, Rinaldi L, Mormone A, et al. Non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and non-viral hepatocarcinoma: pathophysiological mechanisms and new therapeutic strategies[J]. Biomedicines, 2023, 11(2): 468. DOI: 10.3390/biomedicines 11020468.
|
[13] |
Rozpedek W, Pytel D, Mucha B, et al. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress[J]. Curr Mol Med, 2016, 16(6): 533-544. DOI: 10.2174/1566524016666160523143937.
|
[14] |
Dai Y, Xu R, Chen J, et al. Thromboxane A2/thromboxane A2 receptor axis facilitates hepatic insulin resistance and steatosis through endoplasmic reticulum stress in non-alcoholic fatty liver disease[J]. Br J Pharmacol, 2024, 181(7): 967-986. DOI: 10.1111/bph.16238.
|
[15] |
Arroyave-Ospina JC, Wu Z, Geng Y, et al. Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: implications for prevention and therapy[J]. Antioxidants, 2021, 10(2): 174. DOI: 10.3390/antiox10020174.
|
[16] |
Xu X, Poulsen KL, Wu L, et al. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH)[J]. Signal Transduct Target Ther, 2022, 7(1): 287. DOI: 10.1038/s41392-022-01119-3.
|
[17] |
Zhang J, Feng Q. Pharmacological effects and molecular protective mechanisms of Astragalus polysaccharides on nonalcoholic fatty liver disease[J]. Front Pharmacol, 2022, 13: 854674. DOI: 10.3389/fphar.2022.854674.
|
[18] |
Mostafa DG, Khaleel EF, Badi RM, et al. Rutin hydrate inhibits apoptosis in the brains of cadmium chloride-treated rats via preserving the mitochondrial integrity and inhibiting endoplasmic reticulum stress[J]. Neurol Res, 2019, 41(7): 594-608. DOI: 10.1080/01616412.2019.1596206.
|
[19] |
Della TS. Non-alcoholic fatty liver disease as a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence: relevance of estrogen signaling[J]. Front Endocrinol, 2020, 11: 572490. DOI: 10.3389/fendo.2020.572490.
|
[20] |
Shen Y, Cao Y, Zhou L, et al. Construction of an endoplasmic reticulum stress-related gene model for predicting prognosis and immune features in kidney renal clear cell carcinoma[J]. Front Mol Biosci, 2022, 9: 928006. DOI: 10.3389/fmolb.2022.928006.
|
[21] |
Harrison SA, Allen AM, Dubourg J, et al. Challenges and opportunities in NASH drug development[J]. Nat Med, 2023, 29(3): 562-573. DOI: 10.1038/s41591-023-02242-6.
|
[22] |
Seo J, Jeong DW, Park JW, et al. Fatty-acid-induced FABP5/HIF-1 reprograms lipid metabolism and enhances the proliferation of liver cancer cells[J]. Commun Biol, 2020, 3(1): 638. DOI: 10.1038/s42003-020-01367-5.
|
[23] |
Parola M, Pinzani M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies[J]. Mol Aspects Med, 2024, 95: 101231. DOI: 10.1016/j.mam.2023.101231.
|
[24] |
Coll RC, Schroder K, Pelegrín P. NLRP3 and pyroptosis blockers for treating inflammatory diseases[J]. Trends Pharmacol Sci, 2022, 43(8): 653-668. DOI: 10.1016/j.tips.2022.04.003.
|
[25] |
Liang J, Zhao W, Tong P, et al. Comprehensive molecular characterization of inhibitors of apoptosis proteins (IAPs) for therapeutic targeting in cancer[J]. BMC Med Genomics, 2020, 13(1): 7. DOI: 10.1186/s12920-020-0661-x.
|
[26] |
Horn CL, Morales AL, Savard C, et al. Role of cholesterol-associated steatohepatitis in the development of NASH[J]. Hepatol Commun, 2022, 6(1): 12-35. DOI: 10.1002/hep4.1801.
|
[27] |
Liu S, Wu D, Fan Z, et al. FABP4 in obesity-associated carcinogenesis: novel insights into mechanisms and therapeutic implications[J]. Front Mol Biosci, 2022, 9: 973955. DOI: 10.3389/fmolb.2022.973955.
|
[28] |
Jin R, Hao J, Yu J, et al. Role of FABP5 in T cell lipid metabolism and function in the tumor microenvironment[J]. Cancers, 2023, 15(3): 657. DOI: 10.3390/cancers15030657.
|
[29] |
Stanley TL, Fourman LT, Zheng I, et al. Relationship of IGF-1 and IGF-binding proteins to disease severity and glycemia in nonalcoholic fatty liver disease[J]. J Clin Endocrinol Metab, 2021, 106(2): e520-e533. DOI: 10.1210/clinem/dgaa792.
|
[30] |
Francque SM, Bedossa P, Ratziu V, et al. A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH[J]. N Engl J Med, 2021, 385(17): 1547-1558. DOI: 10.1056/NEJMoa2036205.
|
[31] |
Xie Y, Fan KW, Guan SX, et al. LECT2: a pleiotropic and promising hepatokine, from bench to bedside[J]. J Cell Mol Med, 2022, 26(13): 3598-3607. DOI: 10.1111/jcmm.17407.
|
[32] |
Peng H, Wang J, Song X, et al. PHLDA1 suppresses TLR4-triggered proinflammatory cytokine production by interaction with tollip[J]. Front Immunol, 2022, 13: 731500. DOI: 10.3389/fimmu.2022.731500.
|
[33] |
Lu RQ, Zhang YY, Zhao HQ, et al. SGK1, a critical regulator of immune modulation and fibrosis and a potential therapeutic target in chronic graft-versus-host disease[J]. Front Immunol, 2022, 13: 822303. DOI: 10.3389/fimmu.2022.822303.
|
[34] |
Wu X, Jiang W, Wang X, et al. SGK1 enhances Th9 cell differentiation and airway inflammation through NF-κB signaling pathway in asthma[J]. Cell Tissue Res, 2020, 382(3): 563-574. DOI: 10.1007/s00441-020-03252-3.
|
[35] |
Marković I, Savvides SN. Modulation of signaling mediated by TSLP and IL-7 in inflammation, autoimmune diseases, and cancer[J]. Front Immunol, 2020, 11: 1557. DOI: 10.3389/fimmu.2020.01557.
|
[36] |
Kim TH, Hong DG, Yang YM. Hepatokines and non-alcoholic fatty liver disease: linking liver pathophysiology to metabolism[J]. Biomedicines, 2021, 9(12): 1903. DOI: 10.3390/biomedicines9121903.
|
[37] |
Takata N, Ishii KA, Takayama H, et al. LECT2 as a hepatokine links liver steatosis to inflammation via activating tissue macrophages in NASH[J]. Sci Rep, 2021, 11(1): 555. DOI: 10.1038/s41598-020-80689-0.
|
[38] |
Stanbery AG, Smita S, von Moltke J, et al. TSLP, IL-33, and IL-25: not just for allergy and helminth infection[J]. J Allergy Clin Immunol, 2022, 150(6): 1302-1313. DOI: 10.1016/j.jaci.2022.07.003.
|
[39] |
Wang X, He Q, Zhou C, et al. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development[J]. Immunity, 2023, 56(1): 58-77. e11. DOI: 10.1016/j.immuni.2022.11.013.
|
[40] |
Ji X, Ma Q, Wang X, et al. Digeda-4 decoction and its disassembled prescriptions improve dyslipidemia and apoptosis by regulating AMPK/SIRT1 pathway on tyloxapol-induced nonalcoholic fatty liver disease in mice[J]. J Ethnopharmacol, 2023, 317: 116827. DOI: 10.1016/j.jep.2023.116827.
|
[41] |
Hong Y, Sheng L, Zhong J, et al. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice[J]. Gut Microbes, 2021, 13(1): 1-20. DOI: 10.1080/19490976.2021.1930874.
|
[42] |
Deng YF, Xu QQ, Chen TQ, et al. Kinsenoside alleviates inflammation and fibrosis in experimental NASH mice by suppressing the NF-κB/NLRP3 signaling pathway[J]. Phytomedicine, 2022, 104: 154241. DOI: 10.1016/j.phymed.2022.154241.
|
[43] |
van Herck MA, Weyler J, Kwanten WJ, et al. The differential roles of T cells in non-alcoholic fatty liver disease and obesity[J]. Front Immunol, 2019, 10: 82. DOI: 10.3389/fimmu.2019.00082.
|