切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 14 ›› Issue (05) : 761 -769. doi: 10.3877/cma.j.issn.2095-3232.2025.05.015

基础研究

生物信息学分析内质网应激相关基因在非酒精性脂肪性肝炎发病中的作用
张广权, 洪生杰, 陈显育, 王继才, 翟航, 吴芬芳, 史宪杰()   
  1. 518000 深圳,中山大学附属第八医院肝胆胰外科
  • 收稿日期:2025-04-08 出版日期:2025-10-10
  • 通信作者: 史宪杰
  • 基金资助:
    广东省基础与应用基础研究基金企业联合基金项目资助(2023A1515220186); 深圳市基础研究资助项目(JCYJ20220530144404010,JCYJ20220530144404011); 深圳市福田区卫生健康系统科研项目资助(FTWS2023037,FTWS050,FTWS049); 福田区重点专科资助(QZDZK-202413); 中山大学附属第八医院优秀医学创新人才计划资助(YXYXCXRC202414)

Bioinformatics analysis of the role of endoplasmic reticulum stress-associated genes in the pathogenesis of nonalcoholic steatohepatitis

Guangquan Zhang, Shengjie Hong, Xianyu Chen, Jicai Wang, Hang Zhai, Fenfang Wu, Xianjie Shi()   

  1. Department of Hepatobiliary and Pancreatic Surgery, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, China
  • Received:2025-04-08 Published:2025-10-10
  • Corresponding author: Xianjie Shi
引用本文:

张广权, 洪生杰, 陈显育, 王继才, 翟航, 吴芬芳, 史宪杰. 生物信息学分析内质网应激相关基因在非酒精性脂肪性肝炎发病中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 761-769.

Guangquan Zhang, Shengjie Hong, Xianyu Chen, Jicai Wang, Hang Zhai, Fenfang Wu, Xianjie Shi. Bioinformatics analysis of the role of endoplasmic reticulum stress-associated genes in the pathogenesis of nonalcoholic steatohepatitis[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 14(05): 761-769.

目的

利用生物信息学分析方法探索内质网应激(ERS)相关基因在非酒精性脂肪性肝炎(NASH)发展中的潜在作用机制。

方法

本研究从GEO数据库(https://www.ncbi.nlm.nih.gov/geo/)下载基因表达数据集GSE63067。该数据集包含9例NASH患者和7例健康个体的基因表达数据。基于limma软件包的差异表达分析NASH患者与健康对照组间的差异表达基因。采用基因本体(GO)功能分析、KEGG通路富集分析和蛋白质相互作用(PPI)网络构建等方法分析ERS相关差异表达基因在NASH发病中的潜在功能。

结果

共鉴定出14个ERS相关的差异表达基因,其中BIRC3、CASP4、CASP7、FABP5、LECT2、PHLDA1、SGK1、TSLP、SGMS2、NAMPT、IRF1和CD274等12个基因在NASH中表达上调,而CEBPA和IGFBP2表达下调。GO功能分析显示,差异表达基因主要参与NASH发病过程中细胞因子信号通路、细胞凋亡、T细胞增殖调控、细胞活化等相关的生物学过程。KEGG通路分析表明,差异表达基因主要参与TNF信号通路、多物种凋亡通路、核苷酸结合寡聚化结构域(NOD)样受体信号通路、BioCarta IL-1R通路、Hinata NF-κB靶向角质形成细胞上调通路、Marzec IL-2信号上调通路以及Mense缺氧上调通路。PPI网络分析进一步揭示了这些基因之间的潜在相互作用。

结论

ERS相关差异表达基因参与了NASH发病相关的细胞因子信号通路、细胞凋亡、免疫调节和炎症反应等多个生物学过程,为进一步探讨ERS在NASH发病机制中的作用提供了新的线索。

Objective

To investigate the underlying mechanism of endoplasmic reticulum stress (ERS)-associated genes in the progression of nonalcoholic steatohepatitis (NASH) by bioinformatics analysis.

Methods

The GSE63067 dataset was downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). This dataset contains gene expression data of 9 patients with NASH and 7 healthy individuals. Differentially expressed genes between NASH patients and healthy controls were analyzed based on limma software package. Based on bioinformatics analyses, such as Gene Ontology (GO) functional analysis, KEGG pathway enrichment analysis and protein-protein interaction (PPI) network construction, the potential function of ERS-associated differentially expressed genes in the pathogenesis of NASH was illustrated.

Results

14 ERS-associated differentially expressed genes were identified. Among them, the expression levels of 12 genes including BIRC3, CASP4, CASP7, FABP5, LECT2, PHLDA1, SGK1, TSLP, SGMS2, NAMPT, IRF1 and CD274 were up-regulated, whereas those of CEBPA and IGFBP2 were down-regulated in NASH. GO functional analysis showed that differentially expressed genes were mainly involved in cytokine signaling pathway, apoptosis, T cell proliferation regulation, cell activation and other related biological processes in the pathogenesis of NASH. KEGG pathway analysis demonstrated that differentially expressed genes were mainly involved in TNF signaling pathway, multi-species apoptosis pathway, nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway, BioCarta IL-1R pathway, Hinata NF-κB-targeted keratinocyte up-regulation pathway, Marzec IL-2 signal up-regulation pathway and Mense hypoxia up-regulation pathway. PPI network analysis further revealed potential interaction among these genes.

Conclusions

ERS-associated differentially expressed genes are involved in multiple biological processes related to the pathogenesis of NASH, such as cytokine signaling pathway, apoptosis, immune regulation and inflammatory reaction, providing novel clues for further unravelling the role of ERS in the pathogenesis of NASH.

图1 NASH和健康组中ERS相关基因的差异表达 注:a为GSE63067数据集的主成分分析;b为差异表达基因的火山图;c为NASH与健康组ERS相关基因的差异表达热图;ERS为内质网应激,NASH为非酒精性脂肪性肝炎,PC为主成分
图2 ERS相关基因在NASH和健康组中的差异表达 注:ERS为内质网应激,NASH为非酒精性脂肪性肝炎
图3 ERS相关差异表达基因的PPI网络 注:ERS为内质网应激,PPI为蛋白质-蛋白质相互作用
图4 ERS相关差异表达基因Spearman相关性分析 注:ERS为内质网应激
图5 ERS相关差异表达基因的GO功能分析 注:ERS为内质网应激,GO为基因本体,BP为生物过程,MF为分子功能
图6 ERS相关差异表达基因的KEGG通路富集分析 注:a为BioCarta IL-1R通路富集结果;b为Hinata NF-κB靶向角质形成细胞上调通路富集结果;c为Marzec IL-2信号上调通路富集结果;d为Mense缺氧上调通路富集结果;ERS为内质网应激
[1]
Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
[2]
Cusi K, Isaacs S, Barb D, et al. American association of clinical endocrinology clinical practice guideline for the diagnosis and management of nonalcoholic fatty liver disease in primary care and endocrinology clinical settings: co-sponsored by the American association for the study of liver diseases (AASLD)[J]. Endocr Pract, 2022, 28(5): 528-562. DOI: 10.1016/j.eprac.2022.03.010.
[3]
El-Kassas M, Awad A, Elbadry M, et al. Tailored model of care for patients with metabolic dysfunction-associated steatotic liver disease[J]. Semin Liver Dis, 2024, 44(1): 54-68. DOI: 10.1055/a-2253-9181.
[4]
李娇, 葛巧云, 宋奇远, 等. 非酒精性脂肪性肝病组织学评分系统的研究进展[J]. 中华肝脏病杂志, 2023, 31(7): 765-769. DOI: 10.3760/cma.j.cn501113-20230522-00231.
[5]
Ajmera V, Kim BK, Yang K, et al. Liver stiffness on magnetic resonance elastography and the MEFIB index and liver-related outcomes in nonalcoholic fatty liver disease: a systematic review and meta-analysis of individual participants[J]. Gastroenterology, 2022, 163(4): 1079-1089. e5. DOI: 10.1053/j.gastro.2022.06.073.
[6]
Llovet JM, Willoughby CE, Singal AG, et al. Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(8): 487-503. DOI: 10.1038/s41575-023-00754-7.
[7]
Tilg H, Adolph TE, Moschen AR. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: revisited after a decade[J]. Hepatology, 2021, 73(2): 833-842. DOI: 10.1002/hep.31518.
[8]
Pourali G, Hosseini ZS, Maftooh M, et al. Therapeutic potential of herbal medicine against non-alcoholic fatty liver disease[J]. Curr Drug Targets, 2023, 24(4): 300-319. DOI: 10.2174/1389450124666230113150116.
[9]
Hong J, Shin WK, Lee JW, et al. Associations of serum vitamin D level with sarcopenia, non-alcoholic fatty liver disease (NAFLD), and sarcopenia in NAFLD among people aged 50 years and older: the Korea national health and nutrition examination survey IV-V[J]. Metab Syndr Relat Disord, 2022, 20(4): 210-218. DOI: 10.1089/met.2021.0106.
[10]
Ishido S, Tamaki N, Takahashi Y, et al. Risk of cardiovascular disease in lean patients with nonalcoholic fatty liver disease[J]. BMC Gastroenterol, 2023, 23(1): 211. DOI: 10.1186/s12876-023-02848-7.
[11]
Estes C, Razavi H, Loomba R, et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease[J]. Hepatology, 2018, 67(1): 123-133. DOI: 10.1002/hep.29466.
[12]
Vetrano E, Rinaldi L, Mormone A, et al. Non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and non-viral hepatocarcinoma: pathophysiological mechanisms and new therapeutic strategies[J]. Biomedicines, 2023, 11(2): 468. DOI: 10.3390/biomedicines 11020468.
[13]
Rozpedek W, Pytel D, Mucha B, et al. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress[J]. Curr Mol Med, 2016, 16(6): 533-544. DOI: 10.2174/1566524016666160523143937.
[14]
Dai Y, Xu R, Chen J, et al. Thromboxane A2/thromboxane A2 receptor axis facilitates hepatic insulin resistance and steatosis through endoplasmic reticulum stress in non-alcoholic fatty liver disease[J]. Br J Pharmacol, 2024, 181(7): 967-986. DOI: 10.1111/bph.16238.
[15]
Arroyave-Ospina JC, Wu Z, Geng Y, et al. Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: implications for prevention and therapy[J]. Antioxidants, 2021, 10(2): 174. DOI: 10.3390/antiox10020174.
[16]
Xu X, Poulsen KL, Wu L, et al. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH)[J]. Signal Transduct Target Ther, 2022, 7(1): 287. DOI: 10.1038/s41392-022-01119-3.
[17]
Zhang J, Feng Q. Pharmacological effects and molecular protective mechanisms of Astragalus polysaccharides on nonalcoholic fatty liver disease[J]. Front Pharmacol, 2022, 13: 854674. DOI: 10.3389/fphar.2022.854674.
[18]
Mostafa DG, Khaleel EF, Badi RM, et al. Rutin hydrate inhibits apoptosis in the brains of cadmium chloride-treated rats via preserving the mitochondrial integrity and inhibiting endoplasmic reticulum stress[J]. Neurol Res, 2019, 41(7): 594-608. DOI: 10.1080/01616412.2019.1596206.
[19]
Della TS. Non-alcoholic fatty liver disease as a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence: relevance of estrogen signaling[J]. Front Endocrinol, 2020, 11: 572490. DOI: 10.3389/fendo.2020.572490.
[20]
Shen Y, Cao Y, Zhou L, et al. Construction of an endoplasmic reticulum stress-related gene model for predicting prognosis and immune features in kidney renal clear cell carcinoma[J]. Front Mol Biosci, 2022, 9: 928006. DOI: 10.3389/fmolb.2022.928006.
[21]
Harrison SA, Allen AM, Dubourg J, et al. Challenges and opportunities in NASH drug development[J]. Nat Med, 2023, 29(3): 562-573. DOI: 10.1038/s41591-023-02242-6.
[22]
Seo J, Jeong DW, Park JW, et al. Fatty-acid-induced FABP5/HIF-1 reprograms lipid metabolism and enhances the proliferation of liver cancer cells[J]. Commun Biol, 2020, 3(1): 638. DOI: 10.1038/s42003-020-01367-5.
[23]
Parola M, Pinzani M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies[J]. Mol Aspects Med, 2024, 95: 101231. DOI: 10.1016/j.mam.2023.101231.
[24]
Coll RC, Schroder K, Pelegrín P. NLRP3 and pyroptosis blockers for treating inflammatory diseases[J]. Trends Pharmacol Sci, 2022, 43(8): 653-668. DOI: 10.1016/j.tips.2022.04.003.
[25]
Liang J, Zhao W, Tong P, et al. Comprehensive molecular characterization of inhibitors of apoptosis proteins (IAPs) for therapeutic targeting in cancer[J]. BMC Med Genomics, 2020, 13(1): 7. DOI: 10.1186/s12920-020-0661-x.
[26]
Horn CL, Morales AL, Savard C, et al. Role of cholesterol-associated steatohepatitis in the development of NASH[J]. Hepatol Commun, 2022, 6(1): 12-35. DOI: 10.1002/hep4.1801.
[27]
Liu S, Wu D, Fan Z, et al. FABP4 in obesity-associated carcinogenesis: novel insights into mechanisms and therapeutic implications[J]. Front Mol Biosci, 2022, 9: 973955. DOI: 10.3389/fmolb.2022.973955.
[28]
Jin R, Hao J, Yu J, et al. Role of FABP5 in T cell lipid metabolism and function in the tumor microenvironment[J]. Cancers, 2023, 15(3): 657. DOI: 10.3390/cancers15030657.
[29]
Stanley TL, Fourman LT, Zheng I, et al. Relationship of IGF-1 and IGF-binding proteins to disease severity and glycemia in nonalcoholic fatty liver disease[J]. J Clin Endocrinol Metab, 2021, 106(2): e520-e533. DOI: 10.1210/clinem/dgaa792.
[30]
Francque SM, Bedossa P, Ratziu V, et al. A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH[J]. N Engl J Med, 2021, 385(17): 1547-1558. DOI: 10.1056/NEJMoa2036205.
[31]
Xie Y, Fan KW, Guan SX, et al. LECT2: a pleiotropic and promising hepatokine, from bench to bedside[J]. J Cell Mol Med, 2022, 26(13): 3598-3607. DOI: 10.1111/jcmm.17407.
[32]
Peng H, Wang J, Song X, et al. PHLDA1 suppresses TLR4-triggered proinflammatory cytokine production by interaction with tollip[J]. Front Immunol, 2022, 13: 731500. DOI: 10.3389/fimmu.2022.731500.
[33]
Lu RQ, Zhang YY, Zhao HQ, et al. SGK1, a critical regulator of immune modulation and fibrosis and a potential therapeutic target in chronic graft-versus-host disease[J]. Front Immunol, 2022, 13: 822303. DOI: 10.3389/fimmu.2022.822303.
[34]
Wu X, Jiang W, Wang X, et al. SGK1 enhances Th9 cell differentiation and airway inflammation through NF-κB signaling pathway in asthma[J]. Cell Tissue Res, 2020, 382(3): 563-574. DOI: 10.1007/s00441-020-03252-3.
[35]
Marković I, Savvides SN. Modulation of signaling mediated by TSLP and IL-7 in inflammation, autoimmune diseases, and cancer[J]. Front Immunol, 2020, 11: 1557. DOI: 10.3389/fimmu.2020.01557.
[36]
Kim TH, Hong DG, Yang YM. Hepatokines and non-alcoholic fatty liver disease: linking liver pathophysiology to metabolism[J]. Biomedicines, 2021, 9(12): 1903. DOI: 10.3390/biomedicines9121903.
[37]
Takata N, Ishii KA, Takayama H, et al. LECT2 as a hepatokine links liver steatosis to inflammation via activating tissue macrophages in NASH[J]. Sci Rep, 2021, 11(1): 555. DOI: 10.1038/s41598-020-80689-0.
[38]
Stanbery AG, Smita S, von Moltke J, et al. TSLP, IL-33, and IL-25: not just for allergy and helminth infection[J]. J Allergy Clin Immunol, 2022, 150(6): 1302-1313. DOI: 10.1016/j.jaci.2022.07.003.
[39]
Wang X, He Q, Zhou C, et al. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development[J]. Immunity, 2023, 56(1): 58-77. e11. DOI: 10.1016/j.immuni.2022.11.013.
[40]
Ji X, Ma Q, Wang X, et al. Digeda-4 decoction and its disassembled prescriptions improve dyslipidemia and apoptosis by regulating AMPK/SIRT1 pathway on tyloxapol-induced nonalcoholic fatty liver disease in mice[J]. J Ethnopharmacol, 2023, 317: 116827. DOI: 10.1016/j.jep.2023.116827.
[41]
Hong Y, Sheng L, Zhong J, et al. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice[J]. Gut Microbes, 2021, 13(1): 1-20. DOI: 10.1080/19490976.2021.1930874.
[42]
Deng YF, Xu QQ, Chen TQ, et al. Kinsenoside alleviates inflammation and fibrosis in experimental NASH mice by suppressing the NF-κB/NLRP3 signaling pathway[J]. Phytomedicine, 2022, 104: 154241. DOI: 10.1016/j.phymed.2022.154241.
[43]
van Herck MA, Weyler J, Kwanten WJ, et al. The differential roles of T cells in non-alcoholic fatty liver disease and obesity[J]. Front Immunol, 2019, 10: 82. DOI: 10.3389/fimmu.2019.00082.
[1] 郝玥萦, 毛盈譞, 张羽, 汪佳旭, 韩林霖, 匡雯雯, 孟瑶, 杨秀华. 超声引导衰减参数成像评估肝脂肪变性及其对心血管疾病风险的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 770-777.
[2] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[3] 程呈, 卢帅, 陈蓉, 李新萍, 白睿峰, 崔更力, 陈烁, 殷家伟, 胡建鹏, 汪垚卓, 蒋协远, 陈海翎. 基于基因表达数据库分析非酒精性脂肪性肝病炎症损伤相关核心基因[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 99-106.
[4] 李嘉怡, 武楠. 基于基因表达数据库筛选牙周炎与非酒精性脂肪性肝炎的潜在共同关键基因[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(03): 170-180.
[5] 李杰, 冉永红, 郝玉徽. miR-21 靶向环腺苷酸应答元件结合蛋白样蛋白2 加重放射性肺纤维化的作用机制[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 220-225.
[6] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[7] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[8] 何勇飞, 王继才, 吴芬芳, 史宪杰. 粪菌移植在肝胆胰外科领域研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 646-653.
[9] 王继才, 张广权, 吴芬芳, 史宪杰. 孟德尔随机化分析克罗恩病与非酒精性脂肪性肝病之间因果关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 601-608.
[10] 赵阳, 袁筑慧, 周林, 寇建涛, 郎韧, 贺强, 马军. 非酒精性脂肪性肝病肝癌和病毒性肝炎肝癌肝切除围手术期疗效和安全性的对比分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 402-407.
[11] 徐涵治, 邱洵, 汪恺, 徐骁. 脂肪变性供肝脱脂策略的研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 18-24.
[12] 朱蓉蓉, 王俭勤. 通过调控内质网应激信号通路治疗糖尿病肾病的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 104-109.
[13] 杨以太, 王淑莹, 陈月阳, 王景景, 李泽萌, 任党利, 孙洪涛. 莪术醇通过调控eif2a/CHOP信号通路介导的细胞凋亡抑制创伤后应激障碍[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 103-110.
[14] 尚伟锋, 陈德昌. 基于肠道菌群探讨脓毒症相关脑病治疗的新靶点[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 31-35.
[15] 邓绮玲, 庄杰兰, 董家铭, 苏镜. 基于生物信息学分析原发性痛风性关节炎与高尿酸血症的关键基因及相关通路[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(02): 97-105.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?