| [1] |
|
| [2] |
Tang B, Zhu J, Zhao Z, et al. Diagnosis and prognosis models for hepatocellular carcinoma patient's management based on tumor mutation burden[J]. J Adv Res, 2021, 33: 153-165. DOI: 10.1016/j.jare.2021.01.018.
|
| [3] |
Zheng R, Zhang X, Liu B, et al. Comparison of non-radiomics imaging features and radiomics models based on contrast-enhanced ultrasound and Gd-EOB-DTPA-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma within 5 cm[J]. Eur Radiol, 2023, 33(9): 6462-6472. DOI: 10.1007/s00330-023-09789-5.
|
| [4] |
Chong HH, Yang L, Sheng RF, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838. DOI: 10.1007/s00330-020-07601-2.
|
| [5] |
|
| [6] |
Lee S, Kang TW, Song KD, et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation[J]. Ann Surg, 2021, 273(3): 564-571. DOI: 10.1097/SLA.0000000000003268.
|
| [7] |
Hwang S, Joh JW, Wang HJ, et al. Prognostic prediction models for resection of large hepatocellular carcinoma: a Korean multicenter study[J]. World J Surg, 2018, 42(8): 2579-2591. DOI: 10.1007/s00268-018-4468-2.
|
| [8] |
Summers RM. Radiomics to predict microvascular invasion in hepatocellular carcinoma: a promising biomarker for tumor recurrence[J]. Radiology, 2023, 307(4): e230657. DOI: 10.1148/radiol.230657.
|
| [9] |
Mazzaferro V, Llovet JM, Miceli R, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis[J]. Lancet Oncol, 2009, 10(1): 35-43. DOI: 10.1016/S1470-2045(08)70284-5.
|
| [10] |
Chen SL, Xiao H, Xie ZL, et al. The presence of microvascular invasion guides treatment strategy in recurrent HBV-related HCC[J]. Eur Radiol, 2020, 30(6): 3473-3485. DOI: 10.1007/s00330-019-06640-8.
|
| [11] |
Hu H, Qi S, Zeng S, et al. Importance of microvascular invasion risk and tumor size on recurrence and survival of hepatocellular carcinoma after anatomical resection and non-anatomical resection[J]. Front Oncol, 2021, 11: 621622. DOI: 10.3389/fonc.2021.621622.
|
| [12] |
Liu HF, Zhang YZZ, Wang Q, et al. A nomogram model integrating LI-RADS features and radiomics based on contrast-enhanced magnetic resonance imaging for predicting microvascular invasion in hepatocellular carcinoma falling the Milan criteria[J]. Transl Oncol, 2023, 27: 101597. DOI: 10.1016/j.tranon.2022.101597.
|
| [13] |
Yang Y, Zhou Y, Zhou C, et al. Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma[J]. Eur J Surg Oncol, 2022, 48(5): 1068-1077. DOI: 10.1016/j.ejso.2021.11.120.
|
| [14] |
Li W, Shakir TM, Zhao Y, et al. Radiomics analysis of [ 18F] FDG PET/CT for microvascular invasion and prognosis prediction in very-early and early-stage hepatocellular carcinoma[J]. Eur J Nucl Med Mol Imaging, 2021, 48(11): 3353-3354. DOI: 10.1007/s00259-021-05479-w.
|
| [15] |
Peiffer-Smadja N, Rawson TM, Ahmad R, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications[J]. Clin Microbiol Infect, 2020, 26(5): 584-595. DOI: 10.1016/j.cmi.2019.09.009.
|
| [16] |
Yamada A. Editorial for “preoperative evaluation of Gd-EOB-DTPA-enhanced MRI radiomics-based nomogram in small solitary hepatocellular carcinoma (≤3 cm) with microvascular invasion: a two-center study”[J]. J Magn Reson Imaging, 2022, 56(5): 1473-1474. DOI: 10.1002/jmri.28188.
|
| [17] |
Xiao Y, Wu F, Hou K, et al. MR radiomics to predict microvascular invasion status and biological process in combined hepatocellular carcinoma-cholangiocarcinoma[J]. Insights Imaging, 2024, 15(1): 172. DOI: 10.1186/s13244-024-01741-5.
|
| [18] |
Xia TY, Zhou ZH, Meng XP, et al. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model[J]. Radiology, 2023, 307(4): e222729. DOI: 10.1148/radiol.222729.
|
| [19] |
Famularo S, Penzo C, Maino C, et al. Preoperative detection of hepatocellular carcinoma's microvascular invasion on CT-scan by machine learning and radiomics: a preliminary analysis[J]. Eur J Surg Oncol, 2025, 51(1): 108274. DOI: 10.1016/j.ejso.2024.108274.
|
| [20] |
Bo Z, Chen B, Yang Y, et al. Machine learning radiomics to predict the early recurrence of intrahepatic cholangiocarcinoma after curative resection: a multicentre cohort study[J]. Eur J Nucl Med Mol Imaging, 2023, 50(8): 2501-2513. DOI: 10.1007/s00259-023-06184-6.
|
| [21] |
Zhang K, Zhang L, Li WC, et al. Radiomics nomogram for the prediction of microvascular invasion of HCC and patients' benefit from postoperative adjuvant TACE: a multi-center study[J]. Eur Radiol, 2023, 33(12): 8936-8947. DOI: 10.1007/s00330-023-09824-5.
|
| [22] |
Zhang Z, Jia XF, Chen XY, et al. Radiomics-based prediction of microvascular invasion grade in nodular hepatocellular carcinoma using contrast-enhanced magnetic resonance imaging[J]. J Hepatocell Carcinoma, 2024, 11: 1185-1192. DOI: 10.2147/JHC.S461420.
|
| [23] |
|
| [24] |
Ma X, Wei J, Gu D, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT[J]. Eur Radiol, 2019, 29(7): 3595-3605. DOI: 10.1007/s00330-018-5985-y.
|
| [25] |
|
| [26] |
Ho DW, Tsui YM, Chan LK, et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma[J]. Nat Commun, 2021, 12(1): 3684. DOI: 10.1038/s41467-021-24010-1.
|
| [27] |
Liu L, Liu Z, Gao J, et al. CD8 + T cell trajectory subtypes decode tumor heterogeneity and provide treatment recommendations for hepatocellular carcinoma[J]. Front Immunol, 2022, 13: 964190. DOI: 10.3389/fimmu.2022.964190.
|
| [28] |
Chen Q, Xiao H, Gu Y, et al. Deep learning for evaluation of microvascular invasion in hepatocellular carcinoma from tumor areas of histology images[J]. Hepatol Int, 2022, 16(3): 590-602. DOI: 10.1007/s12072-022-10323-w.
|
| [29] |
|
| [30] |
Xu T, Ren L, Liao M, et al. Preoperative radiomics analysis of contrast-enhanced CT for microvascular invasion and prognosis stratification in hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2022, 9: 189-201. DOI: 10.2147/JHC.S356573.
|
| [31] |
|
| [32] |
|
| [33] |
Feng B, Wang L, Zhu Y, et al. The value of LI-RADS and radiomic features from MRI for predicting microvascular invasion in hepatocellular carcinoma within 5 cm[J]. Acad Radiol, 2024, 31(6): 2381-2390. DOI: 10.1016/j.acra.2023.12.007.
|