切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 14 ›› Issue (06) : 875 -881. doi: 10.3877/cma.j.issn.2095-3232.2025.06.010

临床研究

钆塞酸二钠增强MRI在高分化小肝癌和不典型增生结节鉴别诊断中的应用
李健文1, 陈莹2, 陈羲1, 宗晓丹1,()   
  1. 1 510630 广州,中山大学附属第三医院放射科
    2 510630 广州,中山大学附属第三医院超声科
  • 收稿日期:2025-06-12 出版日期:2025-12-10
  • 通信作者: 宗晓丹
  • 基金资助:
    广州市重点研发计划(2023B03J1298)

Application of Gd-EOB-DTPA enhanced MRI in differential diagnosis of small well-differentiated hepatocellular carcinoma and dysplastic nodules

Jianwen Li1, Ying Chen2, Xi Chen1, Xiaodan Zong1,()   

  1. 1 Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
    2 Department of Ultrasound, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2025-06-12 Published:2025-12-10
  • Corresponding author: Xiaodan Zong
引用本文:

李健文, 陈莹, 陈羲, 宗晓丹. 钆塞酸二钠增强MRI在高分化小肝癌和不典型增生结节鉴别诊断中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 875-881.

Jianwen Li, Ying Chen, Xi Chen, Xiaodan Zong. Application of Gd-EOB-DTPA enhanced MRI in differential diagnosis of small well-differentiated hepatocellular carcinoma and dysplastic nodules[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 14(06): 875-881.

目的

探讨钆塞酸二钠(Gd-EOB-DTPA)增强MRI对肝硬化背景下不典型增生结节(DN)与高分化小肝细胞癌(sWDHCC)的鉴别诊断价值,并构建鉴别诊断模型。

方法

回顾性分析2015年1月至2020年12月在中山大学附属第三医院经病理检查证实为DN或sWDHCC 的116例患者临床影像学资料。患者均签署知情同意书,符合医学伦理学规定。其中男98例,女18例;年龄31~74岁,中位年龄59岁。患者均采用Gd-EOB-DTPA增强MRI检查,评估病灶在正反相位T1WI、脂肪抑制T1WI、脂肪抑制T2WI、弥散加权成像(DWI)、动脉期、静脉期、肝胆期图像的影像特征,同时评估病灶边界是否清晰。两组患者图像特征比较采用χ2检验;采用Logistic多因素回归分析鉴别诊断的独立影响因素,并构建回归模型。采用ROC曲线评估模型对sWDHCC和DN的鉴别诊断效能。

结果

Gd-EOB-DTPA增强MRI检查显示,116例患者116个病灶,其中DN病灶44例,sWDHCC病灶72例。单因素分析显示,sWDHCC组具有动脉期高强化(APHE)、DWI高信号、T2WI高信号影像特征患者比例明显高于DN组(χ2=68.280,7.408,5.500;P<0.05)。Logistic多因素回归分析显示,APHE(OR=0.001,95%CI:0.000~0.009)和静脉期廓清(OR=0.058,95%CI:0.010~0.353)是鉴别sWDHCC和DN的独立影响因素(P<0.05)。构建回归模型:Y=3.836-6.588×动脉期特征-2.840×静脉期特征。回归模型鉴别sWDHCC与DN的ROC曲线下面积(AUC)为0.94,敏感度为0.90,特异度为0.89。APHE、DWI高信号、T2WI高信号3个特征的AUC分别为0.86、0.63、0.61。回归模型AUC明显大于APHE、DWI高信号、T2WI高信号单一特征的AUC(Z=3.103,6.176,6.795;P<0.05)。

结论

Gd-EOB-DTPA增强MRI的APHE及静脉期廓清为sWDHCC和DN鉴别诊断的影像学特征,基于影像学特征构建的回归模型具有较高的鉴别诊断价值。

Objective

To evaluate the value of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) enhanced MRI in differential diagnosis of dysplastic nodules (DN) and small well-differentiated hepatocellular carcinoma (sWDHCC) induced by liver cirrhosis, and to construct a differential diagnosis model.

Methods

Clinical imaging data of 116 patients pathologically diagnosed with DN or sWDHCC in the Third Affiliated Hospital of Sun Yat-sen University from January 2015 to December 2020 were retrospectively analyzed. The informed consents of all patients were obtained and the local ethical committee approval was received. Among them, 98 patients were male and 18 female, aged from 31 to 74 years, with a median age of 59 years. All patients received Gd-EOB-DTPA enhanced MRI to evaluate the imaging features of the lesions in in-phase and out-of-phase MRI, fat-suppression T1WI, fat-suppression T2WI, diffusion-weighted imaging (DWI), arterial phase, venous phase and hepatobiliary phase, and to assess whether the margins of the lesions were clear. Imaging characteristics between two groups were compared by Chi-square test. The independent influencing factors of differential diagnosis were identified by multivariate Logistic regression analysis and a regression model was constructed. The differential diagnostic efficiency of this model for sWDHCC and DN was evaluated by the ROC curve.

Results

Gd-EOB-DTPA enhanced MRI showed that 116 lesions from 116 patients included 44 DN and 72 sWDHCC. Univariate analysis showed that the proportion of patients with arterial phase hyperenhancement (APHE), DWI hyperintensity and T2WI hyperintensity in the sWDHCC group was significantly higher than that in the DN group (χ2=68.280, 7.408, 5.500; all P<0.05). Multivariate Logistic regression analysis demonstrated that APHE (OR=0.001, 95%CI: 0.000-0.009) and washout in venous phase (OR=0.058, 95%CI: 0.010-0.353) were the independent influencing factors in differentiating sWDHCC from DN (both P<0.05). The regression model was constructed: Y=3.836-6.588× arterial phase features-2.840×venous phase features. The area under the ROC curve (AUC), sensitivity and specificity of this model in differentiating sWDHCC from DN were 0.94, 0.90 and 0.89, respectively. The AUC of APHE, DWI hyperintensity and T2WI hyperintensity was 0.86, 0.63 and 0.61, respectively. The AUC of the regression model was significantly larger than that of APHE, DWI hyperintensity and T2WI hyperintensity (Z=3.103, 6.176, 6.795; all P<0.05).

Conclusions

Washout during APHE and venous phase of Gd-EOB-DTPA enhanced MRI are the imaging features for differential diagnosis between sWDHCC and DN. This regression model based on imaging features possesses high differential diagnostic value.

表1 DN和sWDHCC两组患者一般资料和影像特征比较
图1 回归模型与其他影像学指标对sWDHCC和DN鉴别的ROC曲线 注:DN为不典型增生结节,sWDHCC为高分化小肝细胞癌,DWI为弥散加权成像,APHE为动脉期高强化
表2 回归模型与其他影像学指标对sWDHCC和DN鉴别的诊断效能
图2 一例肝右后叶sWDHCC患者MRI图像 注:a为脂肪抑制T1WI为低信号;b为脂肪抑制T2WI为高信号;c为DWI高信号;d为APHE;e为静脉期廓清;f为肝胆期为低信号;APHE为动脉期高强化,DWI为弥散加权成像,sWDHCC为高分化小肝细胞癌
[1]
Alawyia B, Constantinou C. Hepatocellular carcinoma: a narrative review on current knowledge and future prospects[J]. Curr Treat Options Oncol, 2023, 24(7): 711-724. DOI: 10.1007/s11864-023-01098-9.
[2]
Forner A, Reig M, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2018, 391(10127): 1301-1314. DOI: 10.1016/S0140-6736(18)30010-2.
[3]
Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1): 6. DOI: 10.1038/s41572-020-00240-3.
[4]
Nagaraju GP, Dariya B, Kasa P, et al. Epigenetics in hepatocellular carcinoma[J]. Semin Cancer Biol, 2022, 86(Pt 3): 622-632. DOI: 10.1016/j.semcancer.2021.07.017.
[5]
Foglia B, Turato C, Cannito S. Hepatocellular carcinoma: latest research in pathogenesis, detection and treatment[J]. Int J Mol Sci, 2023, 24(15): 12224. DOI: 10.3390/ijms241512224.
[6]
Cheng N, Ren Y, Zhou J, et al. Deep learning-based classification of hepatocellular nodular lesions on whole-slide histopathologic images[J]. Gastroenterology, 2022, 162(7): 1948-1961. e7. DOI: 10.1053/j.gastro.2022.02.025.
[7]
Fung A, Shanbhogue KP, Taffel MT, et al. Hepatocarcinogenesis: radiology-pathology correlation[J]. Magn Reson Imaging Clin N Am, 2021, 29(3): 359-374. DOI: 10.1016/j.mric.2021.05.007.
[8]
Sato T, Kondo F, Ebara M, et al. Natural history of large regenerative nodules and dysplastic nodules in liver cirrhosis: 28-year follow-up study[J]. Hepatol Int, 2015, 9(2): 330-336. DOI: 10.1007/s12072-015-9620-6.
[9]
Lee YT, Fujiwara N, Yang JD, et al. Risk stratification and early detection biomarkers for precision HCC screening[J]. Hepatology, 2023, 78(1): 319-362. DOI: 10.1002/hep.32779.
[10]
Ganesan P, Kulik LM. Hepatocellular carcinoma: new developments[J]. Clin Liver Dis, 2023, 27(1): 85-102. DOI: 10.1016/j.cld.2022.08.004.
[11]
Ahn JC, Lee YT, Agopian VG, et al. Hepatocellular carcinoma surveillance: current practice and future directions[J]. Hepatoma Res, 2022, 8: 10. DOI: 10.20517/2394-5079.2021.131.
[12]
Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 358-380. DOI: 10.1002/hep.29086.
[13]
Zhong X, Guan T, Tang D, et al. Differentiation of small (≤ 3 cm) hepatocellular carcinomas from benign nodules in cirrhotic liver: the added additive value of MRI-based radiomics analysis to LI-RADS version 2018 algorithm[J]. BMC Gastroenterol, 2021, 21(1): 155. DOI: 10.1186/s12876-021-01710-y.
[14]
Golfieri R, Renzulli M, Lucidi V, et al. Contribution of the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI to Dynamic MRI in the detection of hypovascular small (≤ 2 cm) HCC in cirrhosis[J]. Eur Radiol, 2011, 21(6): 1233-1242. DOI: 10.1007/s00330-010-2030-1.
[15]
李文婧, 许永生, 雷军强. Gd-EOB-DTPA增强MRI对不典型增生结节和肝细胞癌的鉴别诊断效能的Meta分析[J]. 中国循证医学杂志, 2023, 23(12): 1400-1406. DOI: 10.7507/1672-2531-203006128.
[16]
Korean Liver Cancer Association (KLCA), National Cancer Center (NCC), Goyang, et al. 2018 Korean liver cancer association-National Cancer Center Korea practice guidelines for the management of hepatocellular carcinoma[J]. Korean J Radiol, 2019, 20(7): 1042-1113. DOI: 10.3348/kjr.2019.0140.
[17]
Li XQ, Wang X, Zhao DW, et al. Application of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) in hepatocellular carcinoma[J]. World J Surg Oncol, 2020, 18(1): 219. DOI: 10.1186/s12957-020-01996-4.
[18]
Murakami T, Sofue K, Hori M. Diagnosis of hepatocellular carcinoma using Gd-EOB-DTPA MR imaging[J]. Magn Reson Med Sci, 2022, 21(1): 168-181. DOI: 10.2463/mrms.rev.2021-0031.
[19]
Tang A, Bashir MR, Corwin MT, et al. Evidence supporting LI-RADS major features for CT-and MR imaging-based diagnosis of hepatocellular carcinoma: a systematic review[J]. Radiology, 2018, 286(1): 29-48. DOI: 10.1148/radiol.2017170554.
[20]
Kitzing YX, Ng BH, Kitzing B, et al. Washout of hepatocellular carcinoma on portal venous phase of multidetector computed tomography in a pre-transplant population[J]. J Med Imaging Radiat Oncol, 2015, 59(6): 673-680. DOI: 10.1111/1754-9485.12347.
[21]
Chernyak V, Fowler KJ, Kamaya A, et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients[J]. Radiology, 2018, 289(3): 816-830. DOI: 10.1148/radiol.2018181494.
[22]
Kim YN, Song JS, Moon WS, et al. Intra-individual comparison of hepatocellular carcinoma imaging features on contrast-enhanced computed tomography, gadopentetate dimeglumine-enhanced MRI, and gadoxetic acid-enhanced MRI[J]. Acta Radiol, 2018, 59(6): 639-648. DOI: 10.1177/0284185117728534.
[23]
Min JH, Kang TW, Kim YY, et al. Vanishing washout of hepatocellular carcinoma according to the presence of hepatic steatosis: diagnostic performance of CT and MRI[J]. Eur Radiol, 2021, 31(5): 3315-3325. DOI: 10.1007/s00330-020-07438-9.
[24]
European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma[J]. J Hepatol, 2018, 69(1): 182-236. DOI: 10.1016/j.jhep.2018.03.019.
[25]
田玉亭, 李代欣, 付志浩, 等. 钆塞酸二钠磁共振成像表观弥散系数值联合最大强化率鉴别肝硬化背景下不典型增生结节与小肝癌[J/OL]. 中国肝脏病杂志(电子版), 2020, 12(4): 17-22. DOI: 10.3969/j.issn.1674-7380.2020.04.003.
[26]
Renzulli M, Biselli M, Brocchi S, et al. New hallmark of hepatocellular carcinoma, early hepatocellular carcinoma and high-grade dysplastic nodules on Gd-EOB-DTPA MRI in patients with cirrhosis: a new diagnostic algorithm[J]. Gut, 2018, 67(9): 1674-1682. DOI: 10.1136/gutjnl-2017-315384.
[27]
Renzulli M, Braccischi L, D'Errico A, et al. State-of-the-art review on the correlations between pathological and magnetic resonance features of cirrhotic nodules[J]. Histol Histopathol, 2022, 37(12): 1151-1165. DOI: 10.14670/HH-18-487.
[28]
Philips CA, Rajesh S, Nair DC, et al. Hepatocellular carcinoma in 2021: an exhaustive update[J]. Cureus, 2021, 13(11): e19274. DOI: 10.7759/cureus.19274.
[29]
Lan H, Lin G, Zhong W. A meta-analysis of the added value of diffusion weighted imaging in combination with contrast-enhanced magnetic resonance imaging for the diagnosis of small hepatocellular carcinoma lesser or equal to 2 cm[J]. Oncol Lett, 2020, 20(3): 2739-2748. DOI: 10.3892/ol.2020.11805.
[30]
Zhong X, Tang H, Lu B, et al. Differentiation of small hepatocellular carcinoma from dysplastic nodules in cirrhotic liver: texture analysis based on MRI improved performance in comparison over gadoxetic acid-enhanced MR and diffusion-weighted imaging[J]. Front Oncol, 2020, 9: 1382. DOI: 10.3389/fonc.2019.01382.
[31]
苏家威, 俞顺. 钆塞酸二钠增强扫描对钆喷酸葡胺增强磁共振成像中表现不典型肝硬化结节的诊断价值[J]. 实用医学影像杂志, 2022, 23(3): 293-296. DOI: 10.16106/j.cnki.cn14-1281/r.2022.03.025.
[32]
Zong X, Li M, Li J, et al. Mean ADC values and arterial phase hyperintensity discriminate small (≤ 3 cm) well-differentiated hepatocellular carcinoma from dysplastic nodule[J]. Abdom Radiol, 2024, 49(4): 1132-1143. DOI: 10.1007/s00261-023-04171-x.
[1] 梁于勇, 郑丽, 杨俭. PDCD4与原发性肝细胞癌患者肝切除术后疾病进展的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 666-669.
[2] 汤震平, 曾鹏飞, 柏斗胜. 绕肝悬吊前入路与传统入路右半肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 670-673.
[3] 李婷婷, 李宏羽, 吴孟航. 肝动脉灌注化疗在不可切除肝细胞癌中的应用进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 705-708.
[4] 吴哲境, 李敬东. ICG荧光成像引导下腹腔镜肝切除术治疗肝癌的安全性和有效性Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 852-859.
[5] 黄少坚, 梁汉标, 李清平, 唐善华, 李青妍, 李芷西, 黄灿, 王小振, 陈灿辉, 王恺, 李川江. 基于影像组学和临床特征构建肝癌新辅助/转化治疗后病理学完全缓解预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 860-867.
[6] 王利皓, 罗世超, 唐强, 尚栋良, 段少博, 卢冰, 李海, 薛飞. 仑伐替尼和PD-1抑制剂预处理联合TACE序贯治疗CNLC分期Ⅲ期肝癌疗效及安全性[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 868-874.
[7] 张燕, 许丁伟, 胡满琴, 黄昊扬, 宋光娜, 黄洁. 术前免疫炎症指标对肝癌肝切除术患者生存预后的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 707-715.
[8] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[9] 唐善华, 赖展鸿, 刘海晴, 王小振, 王恺, 周杰. 基于XGBoost算法构建肝癌肝切除术后肝衰竭早期识别预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 725-731.
[10] 赵俊宇, 林航宇, 李会灵, 王显飞, 游川. 肝癌肝切除术后大量腹水预测模型的建立与验证[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 740-747.
[11] 胡铭语, 李敬东, 肖雨竹, 黄杰. 初始不可切除肝癌患者转化治疗序贯手术的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 754-760.
[12] 杨金通, 付必莽, 马朝宇, 兰楮, 王朝, 李春满. 肝细胞癌伴淋巴结转移一例[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 770-774.
[13] 余安海, 袁文康, 陈佳乐, 张超, 张冲. 肝癌患者术前预康复研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 775-779.
[14] 丁雪吟, 孙居仙, 石洁, 程树群. 肝癌肺转移的放射治疗研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 789-794.
[15] 鲁莽, 马晓璐, 沈浮, 王颢, 邵成伟, 张卫, 陆建平, 陆海迪. 基于磁共振的深度学习重建方法在直肠癌术前评估中的应用研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 445-456.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?