| [1] |
李亚楠, 陈斐斐, 田野, 等. 肠道菌群在原发性肝癌发生、发展中的研究进展[J]. 临床肿瘤学杂志, 2023, 28(7): 654-659.
|
| [2] |
Huang L, Yu Q, Peng H, et al. Alterations of gut microbiome and effects of probiotic therapy in patients with liver cirrhosis: a systematic review and meta-analysis[J]. Medicine, 2022, 101(51): e32335. DOI: 10.1097/MD.0000000000032335.
|
| [3] |
Chen D, Le TH, Shahidipour H, et al. The role of gut-derived microbial antigens on liver fibrosis initiation and progression[J]. Cells, 2019, 8(11): 1324. DOI: 10.3390/cells8111324.
|
| [4] |
Rumyantsev KA, Polyakova VV, Sorokina IV, et al. The gut microbiota impacts gastrointestinal cancers through obesity, diabetes, and chronic inflammation[J]. Life, 2024, 14(10): 1219. DOI: 10.3390/life14101219.
|
| [5] |
Vetrano E, Rinaldi L, Mormone A, et al. Non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and non-viral hepatocarcinoma: pathophysiological mechanisms and new therapeutic strategies[J]. Biomedicines, 2023, 11(2): 468. DOI: 10.3390/biomedicines11020468.
|
| [6] |
Scheithauer TPM, Rampanelli E, Nieuwdorp M, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes[J]. Front Immunol, 2020, 11: 571731. DOI: 10.3389/fimmu.2020.571731.
|
| [7] |
Rasooly D, Patel CJ. Conducting a reproducible mendelian randomization analysis using the R analytic statistical environment[J]. Curr Protoc Hum Genet, 2019, 101(1): e82. DOI: 10.1002/cphg.82.
|
| [8] |
杜凯豪, 侯立朝, 罗兰明慧, 等. 孟德尔随机化在胰腺癌研究中的应用现状与展望[J]. 临床肝胆病杂志, 2024, 40(10): 2127-2136. DOI: 10.12449/JCH241033.
|
| [9] |
Ma J, Li J, Jin C, et al. Association of gut microbiome and primary liver cancer: a two-sample Mendelian randomization and case-control study[J]. Liver Int, 2023, 43(1): 221-233. DOI: 10.1111/liv.15466.
|
| [10] |
Ang QY, Alba DL, Upadhyay V, et al. The East Asian gut microbiome is distinct from colocalized White subjects and connected to metabolic health[J]. Elife, 2021, 10: e70349. DOI: 10.7554/eLife.70349.
|
| [11] |
Syromyatnikov M, Nesterova E, Gladkikh M, et al. Characteristics of the gut bacterial composition in people of different nationalities and religions[J]. Microorganisms, 2022, 10(9): 1866. DOI: 10.3390/microorganisms10091866.
|
| [12] |
Dwiyanto J, Hussain MH, Reidpath D, et al. Ethnicity influences the gut microbiota of individuals sharing a geographical location: a cross-sectional study from a middle-income country[J]. Sci Rep, 2021, 11(1): 2618. DOI: 10.1038/s41598-021-82311-3.
|
| [13] |
Liu X, Tong X, Zou Y, et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome[J]. Nat Genet, 2022, 54(1): 52-61. DOI: 10.1038/s41588-021-00968-y.
|
| [14] |
Ishigaki K, Akiyama M, Kanai M, et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases[J]. Nat Genet, 2020, 52(7): 669-679. DOI: 10.1038/s41588-020-0640-3.
|
| [15] |
Sakaue S, Kanai M, Tanigawa Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes[J]. Nat Genet, 2021, 53(10): 1415-1424. DOI: 10.1038/s41588-021-00931-x.
|
| [16] |
Wang C, Zhu D, Zhang D, et al. Causal role of immune cells in schizophrenia: Mendelian randomization (MR) study[J]. BMC Psychiatry, 2023, 23(1): 590. DOI: 10.1186/s12888-023-05081-4.
|
| [17] |
Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants[J]. Int J Epidemiol, 2011, 40(3): 740-752. DOI: 10.1093/ije/dyq151.
|
| [18] |
Zheng J, Baird D, Borges MC, et al. Recent developments in mendelian randomization studies[J]. Curr Epidemiol Rep, 2017, 4(4): 330-345. DOI: 10.1007/s40471-017-0128-6.
|
| [19] |
Lin Z, Deng Y, Pan W. Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model[J]. PLoS Genet, 2021, 17(11): e1009922. DOI: 10.1371/journal.pgen.1009922.
|
| [20] |
Zhao J, Ming J, Hu X, et al. Bayesian weighted Mendelian randomization for causal inference based on summary statistics[J]. Bioinformatics, 2020, 36(5): 1501-1508. DOI: 10.1093/bioinformatics/btz749.
|
| [21] |
Xue H, Pan W. Inferring causal direction between two traits in the presence of horizontal pleiotropy with GWAS summary data[J]. PLoS Genet, 2020, 16(11): e1009105. DOI: 10.1371/journal.pgen.1009105.
|
| [22] |
Zhang X, Cong R, Geng T, et al. Assessment of the causal effect of IgG N-glycosylation level on risk of dementia: a 2-sample mendelian randomization study[J]. J Alzheimers Dis, 2022, 88(4): 1435-1441. DOI: 10.3233/JAD-220074.
|
| [23] |
Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement[J]. JAMA, 2021, 326(16): 1614-1621. DOI: 10.1001/jama.2021.18236.
|
| [24] |
Bedu-Ferrari C, Biscarrat P, Langella P, et al. Prebiotics and the human gut microbiota: from breakdown mechanisms to the impact on metabolic health[J]. Nutrients, 2022, 14(10): 2096. DOI: 10.3390/nu14102096.
|
| [25] |
Al Bander Z, Nitert MD, Mousa A, et al. The gut microbiota and inflammation: an overview[J]. Int J Environ Res Public Health, 2020, 17(20): 7618. DOI: 10.3390/ijerph17207618.
|
| [26] |
Zheng Y, Li Y, Feng J, et al. Cellular based immunotherapy for primary liver cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 250. DOI: 10.1186/s13046-021-02030-5.
|
| [27] |
Huang PS, Wang LY, Wang YW, et al. Evaluation and application of drug resistance by biomarkers in the clinical treatment of liver cancer[J]. Cells, 2023, 12(6): 869. DOI: 10.3390/cells12060869.
|
| [28] |
Qin H, Yuan B, Huang W, et al. Utilizing gut microbiota to improve hepatobiliary tumor treatments: recent advances[J]. Front Oncol, 2022, 12: 924696. DOI: 10.3389/fonc.2022.924696.
|
| [29] |
Hizo GH, Rampelotto PH. The role of Bifidobacterium in liver diseases: a systematic review of next-generation sequencing studies[J]. Microorganisms, 2023, 11(12): 2999. DOI: 10.3390/microorganisms11122999.
|
| [30] |
Al-Sadi R, Dharmaprakash V, Nighot P, et al. Bifidobacterium bifidum enhances the intestinal epithelial tight junction barrier and protects against intestinal inflammation by targeting the toll-like receptor-2 pathway in an NF-κB-independent manner[J]. Int J Mol Sci, 2021, 22(15): 8070. DOI: 10.3390/ijms22158070.
|
| [31] |
Aghamohammad S, Sepehr A, Miri ST, et al. The potential role of Bifidobacterium spp. as a preventive and therapeutic agent in controlling inflammation via affecting inflammatory signalling pathways[J]. Lett Appl Microbiol, 2022, 75(5): 1254-1263. DOI: 10.1111/lam.13793.
|
| [32] |
Fu Y, Lyu J, Wang S. The role of intestinal microbes on intestinal barrier function and host immunity from a metabolite perspective[J]. Front Immunol, 2023, 14: 1277102. DOI: 10.3389/fimmu.2023.1277102.
|
| [33] |
He J, Zhang P, Shen L, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism[J]. Int J Mol Sci, 2020, 21(17): 6356. DOI: 10.3390/ijms21176356.
|
| [34] |
Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 277. DOI: 10.3389/fimmu.2019.00277.
|
| [35] |
Carretta MD, Quiroga J, López R, et al. Participation of short-chain fatty acids and their receptors in gut inflammation and colon cancer[J]. Front Physiol, 2021, 12: 662739. DOI: 10.3389/fphys.2021.662739.
|
| [36] |
Albuquerque-Souza E, Sahingur SE. Periodontitis, chronic liver diseases, and the emerging oral-gut-liver axis[J]. Periodontol 2000, 2022, 89(1): 125-141. DOI: 10.1111/prd.12427.
|
| [37] |
Imai J, Kitamoto S, Kamada N. The pathogenic oral-gut-liver axis: new understandings and clinical implications[J]. Expert Rev Clin Immunol, 2021, 17(7): 727-736. DOI: 10.1080/1744666X.2021.1935877.
|
| [38] |
Jia B, Jeon CO. Promotion and induction of liver cancer by gut microbiome-mediated modulation of bile acids[J]. PLoS Pathog, 2019, 15(9): e1007954. DOI: 10.1371/journal.ppat.1007954.
|
| [39] |
Sivaprakasam S, Prasad PD, Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis[J]. Pharmacol Ther, 2016, 164: 144-151. DOI: 10.1016/j.pharmthera.2016.04.007.
|
| [40] |
Maraki S, Plevritaki A, Kofteridis D, et al. Bicuspid aortic valve endocarditis caused by Gemella sanguinis: case report and literature review[J]. J Infect Public Health, 2019, 12(3): 304-308. DOI: 10.1016/j.jiph.2019.01.001.
|
| [41] |
Kim JH, Kwon HY, Durey A. Thrombophlebitis of superior mesenteric vein with bacteremia of Gemella sanguinis and Streptococcus gordonii[J]. J Microbiol Immunol Infect, 2019, 52(4): 672-673. DOI: 10.1016/j.jmii.2018.06.001.
|
| [42] |
Ariyoshi T, Hagihara M, Takahashi M, et al. Effect of Clostridium butyricum on gastrointestinal infections[J]. Biomedicines, 2022, 10(2): 483. DOI: 10.3390/biomedicines10020483.
|
| [43] |
Song Y, Lau HC, Zhang X, et al. Bile acids, gut microbiota, and therapeutic insights in hepatocellular carcinoma[J]. Cancer Biol Med, 2023, 21(2): 144-162. DOI: 10.20892/j.issn.2095-3941.2023.0394.
|
| [44] |
Jiménez C, Garrido M, Pussinen P, et al. Systemic burden and cardiovascular risk to Porphyromonas species in apical periodontitis[J]. Clin Oral Investig, 2022, 26(1): 993-1001. DOI: 10.1007/s00784-021-04083-4.
|
| [45] |
de Leeuw C, Savage J, Bucur IG, et al. Understanding the assumptions underlying mendelian randomization[J]. Eur J Hum Genet, 2022, 30(6): 653-660. DOI: 10.1038/s41431-022-01038-5.
|
| [46] |
Kern L, Abdeen SK, Kolodziejczyk AA, et al. Commensal inter-bacterial interactions shaping the microbiota[J]. Curr Opin Microbiol, 2021, 63: 158-171. DOI: 10.1016/j.mib.2021.07.011.
|