切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2017, Vol. 06 ›› Issue (06) : 509 -512. doi: 10.3877/cma.j.issn.2095-3232.2017.06.020

所属专题: 文献

基础研究

七氟醚预处理对糖尿病小鼠肝缺血-再灌注损伤的保护作用
欧珊珊1, 韩玉湘1, 肖笑雨1, 杨禄坤1, 朱颖娴1,()   
  1. 1. 519000 广东省珠海市,中山大学附属第五医院麻醉科
  • 收稿日期:2017-08-23 出版日期:2017-12-10
  • 通信作者: 朱颖娴
  • 基金资助:
    珠海市科技计划项目(2014D0401990015)

Protective effect of sevoflurane pretreatment on liver ischemic-reperfusion injury in diabetes mellitus mice

Shanshan Ou1, Yuxiang Han1, Xiaoyu Xiao1, Lukun Yang1, Yingxian Zhu1,()   

  1. 1. Department of Anesthesiology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
  • Received:2017-08-23 Published:2017-12-10
  • Corresponding author: Yingxian Zhu
  • About author:
    Corresponding author: Zhu Yingxian, Email:
引用本文:

欧珊珊, 韩玉湘, 肖笑雨, 杨禄坤, 朱颖娴. 七氟醚预处理对糖尿病小鼠肝缺血-再灌注损伤的保护作用[J/OL]. 中华肝脏外科手术学电子杂志, 2017, 06(06): 509-512.

Shanshan Ou, Yuxiang Han, Xiaoyu Xiao, Lukun Yang, Yingxian Zhu. Protective effect of sevoflurane pretreatment on liver ischemic-reperfusion injury in diabetes mellitus mice[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2017, 06(06): 509-512.

目的

探讨七氟醚预处理对糖尿病小鼠肝缺血-再灌注损伤(IRI)的保护作用及其机制。

方法

雄性db/db 2型糖尿病模型小鼠24只,体重25~30 g/只,按随机数字表法分为假手术组(Sham组)、肝IRI组(IRI组)、七氟醚预处理组(S组)及七氟醚预处理+缺血-再灌注损伤组(SIR组),每组6只。Sham组仅暴露第一肝门,不阻断血流;IRI组肝门阻断30 min,恢复肝脏血流;S组吸入2.4%七氟醚120 min后行假手术;SIR组肝门阻断前吸入2.4%七氟醚120 min。检测各组血清中ALT、AST和肝组织超氧化物歧化酶(SOD)、丙二醇(MDA)等指标;Western blot法检测肝组织中核因子-κB(NF-κB)、细胞间黏附分子-1 (ICAM-1)蛋白的表达。检测指标比较采用单因素方差分析和LSD-t检验。

结果

SIR组的ALT、AST分别为(67±12)、(92±8)U/L,明显低于IRI组的(88±12)、(117±15)U/L(LSD-t=-4.18,-4.61;P<0.05)。SIR组的SOD活性为(126±12)U/mg,明显高于IRI组的(85±9)U/mg (LSD-t=6.53,P<0.05)。SIR组的MDA活性为(4.3±0.7)nmol/mg,明显低于IRI组的(6.7±1.1)nmol/mg(LSD-t=-5.85,P<0.05)。SIR组的NF-κB、ICAM-1蛋白的相对表达量分别为0.53±0.19、0.96±0.13,明显低于IRI组的0.97±0.13、1.29±0.11(LSD-t=-6.01,-5.63;P<0.05)。

结论

七氟醚预处理能减轻糖尿病小鼠IRI,其机制可能与增强自由基的清除能力、抑制NF-κB信号通路、降低肝脏内皮细胞ICAM-1的表达相关。

Objective

To investigate the effect and mechanism of sevoflurane pretreatment on the liver ischemia-reperfusion injury (IRI) in diabetes mellitus mice model.

Methods

Twenty-four male db/db mice with type 2 diabetes mellitus, weighed 25-30 g each, were divided into the sham surgery group (Sham group), liver IRI group (IRI group), sevoflurane pretreatment group (S group) and sevoflurane pretreatment combined with ischemic-reperfusion group (SIR group), with 6 mice in each group. In Sham group, only the porta hepatis was exposed without blood occlusion. In IRI group, the hepatic portal occlusion was performed for 30 min and restored afterward. In S group, sham operation was conducted 120 min after inhalation of 2.4% sevoflurane. In SIR group, inhalation of 2.4% sevoflurane for 120 min was delivered before hepatic portal occlusion. The levels of serum ALT, AST, superoxide dismutase (SOD) and malondialdehyde (MDA) in liver tissue of each group were measured. The expression levels of nuclear factor-κB (NF-κB) and intercellular adhesion molecule-1 (ICAM-1) proteins in liver tissue were detected by Western blot. The tested results were compared using One-way ANOVA and LSD-t test.

Results

In SIR group, the level of serum ALT and AST was respectively (67±12) and (92±8) U/L, significantly lower than (88±12) and (117±15) U/L in IRI group (LSD-t=-4.18, -4.61; P<0.05). In SIR group, the SOD activity was (126±12) U/mg, significantly higher than (85±9) U/mg in IRI group (LSD-t=6.53, P<0.05). In SIR group, the MDA activity was (4.3±0.7) nmol/mg, significantly lower than (6.7±1.1) nmol/mg in IRI group (LSD-t=-5.85, P<0.05). In SIR group, the relative expression level of NF-κB and ICAM-1 protein was respectively 0.53±0.19 and 0.96±0.13, significantly lower than 0.97±0.13 and 1.29±0.11 in IRI group (LSD-t=-6.01, -5.63; P<0.05).

Conclusions

Sevoflurane pretreatment can mitigate IRI in diabetes mellitus mice, probably through enhancing the eliminating ability of free radicals, inhibiting NF-κB signaling pathway and down-regulating the expression of ICAM-1 in liver endothelial cells.

表1 四组糖尿病小鼠血清ALT、AST水平比较(U/L,±s
表2 四组糖尿病小鼠肝组织SOD、MDA活性比较(±s
表3 四组糖尿病小鼠肝组织NF-κB、ICAM-1表达水平的比较(±s
[1]
Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013, 310(9):948-959.
[2]
Watt KD, Charlton MR. Metabolic syndrome and liver transplantation: a review and guide to management[J]. J Hepatol, 2010, 53(1):199-206.
[3]
Parekh J, Corley DA, Feng S. Diabetes, hypertension and hyperlipidemia: prevalence over time and impact on long-term survival after liver transplantation[J]. Am J Transplant, 2012, 12(8):2181-2187.
[4]
Zhao J, Wang F, Zhang Y, et al. Sevoflurane preconditioning attenuates myocardial ischemia/reperfusion injury via caveolin-3-dependent cyclooxygenase-2 inhibition[J]. Circulation, 2013, 128(11 Suppl 1):S121-129.
[5]
Lurati Buse GA, Schumacher P, Seeberger E, et al. Randomized comparison of sevoflurane versus propofol to reduce perioperative myocardial ischemia in patients undergoing noncardiac surgery[J]. Circulation, 2012, 126(23):2696-2704.
[6]
Zhou SP, Jiang P, Liu L, et al. Protective effect of sevoflurane on hepatic ischaemia/reperfusion injury in the rat: a dose-response study[J]. Eur J Anaesthesiol, 2013, 30(10):612-617.
[7]
周少朋,张雪霞,候冰宗,等.七氟醚预处理对大鼠肝脏缺血再灌注损伤的影响[J/CD].消化肿瘤杂志(电子版),2011,3(1):45-48.
[8]
张南文,吴伟芳,林剑鸣.不同浓度水合氯醛在两种雄性小鼠麻醉中的应用[J].临床麻醉学杂志,2014,30(2):171-173.
[9]
Yamada F, Saito T, Abe T, et al. Ischemic preconditioning enhances regenerative capacity of hepatocytes in long-term ischemically damaged rat livers[J]. J Gastroenterol Hepatol, 2007, 22(11):1971-1977.
[10]
Gujral JS, Bucci TJ, Farhood A, et al. Mechanism of cell death during warm hepatic ischemia-reperfusion in rats: apoptosis or necrosis?[J]. Hepatology, 2001, 33(2):397-405.
[11]
Penna C, Mancardi D, Rastaldo R, et al. Cardioprotection: a radical view free radicals in pre and postconditioning[J]. Biochim Biophys Acta, 2009, 1787(7):781-793.
[12]
Karatzas T, Neri AA, Baibaki ME, et al. Rodent models of hepatic ischemia-reperfusion injury: time and percentage-related pathophysiological mechanisms[J]. J Surg Res, 2014, 191(2):399-412.
[13]
谢汉镔,葛缅,池信锦,等.肝移植围手术期缺血-再灌注胃氧化损伤发生机制[J/CD].中华肝脏外科手术学电子杂志,2015,4(4):254-258.
[14]
Romanque UP, Uribe MM, Videla LA. Molecular mechanisms in liver ischemic-reperfusion injury and ischemic preconditioning[J]. Rev Med Chil, 2005, 133(4):469-476.
[15]
Luedde T, Liedtke C, Manns MP, et al. Losing balance: cytokine signaling and cell death in the context of hepatocyte injury and hepatic failure[J]. Eur Cytokine Netw, 2002, 13(4):377-383.
[16]
Cutrin JC, Boveris A, Zingaro B, et al. In situ determination by surface chemiluminescence of temporal relationships between evolving warm ischemia-reperfusion injury in rat liver and phagocyte activation and recruitment[J]. Hepatology, 2000, 31(3):622-632.
[17]
Hisama N, Yamaguchi Y, Ishiko T, et al. Kupffer cell production of cytokine-induced neutrophil chemoattractant following ischemia/reperfusion injury in rats[J]. Hepatology, 1996, 24(5):1193-1198.
[18]
El-Wahsh M, Seifalian AM, Fuller BJ, et al. Induction of adhesion molecule expression in liver ischaemia-reperfusion injury is associated with impaired hepatic parenchymal microcirculation[J]. Br J Surg, 2004, 91(8):1034-1039.
[19]
Zheng J, Wang WL. Risk factors of metabolic syndrome after liver transplantation[J]. Hepatobiliary Pancreat Dis Int, 2015, 14(6):582-587.
[20]
Meng GX, Yuan Q, Wei LP, et al. Protein kinase C-beta inhibitor treatment attenuates hepatic ischemia and reperfusion injury in diabetic rats[J]. Exp Ther Med, 2016, 11(2):565-570.
[1] 诸琴红, 夏典平, 葛芳娣, 崔大伟. 抗氧化和炎症指标在糖尿病肾病患者中的临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 307-311.
[2] 许彬, 王丽, 陈瑞, 沈奕, 陆件. 瞬时受体电位粘脂素1介导细胞自噬在远端缺血后处理保护大鼠脑缺血-再灌注损伤中的作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 180-187.
[3] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[4] 王雪玲, 曹欢, 顾劲扬. 肠道菌群在器官缺血再灌注损伤中的作用及机制研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 247-250.
[5] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[6] 何岩, 向文采. 七氟醚与异丙酚联合氯胺酮麻醉在疝修补术中的镇静镇痛效果及安全性[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 566-569.
[7] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[8] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[9] 张云飞, 吐尔洪江·吐逊. NLRP3炎症小体及其在肝脏缺血-再灌注损伤中的作用机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 398-403.
[10] 阿卜杜萨拉木·图尔荪麦麦提, 吐尔洪江·吐逊, 温浩. 肝脏缺血-再灌注损伤与cGAS-STING信号通路[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 394-397.
[11] 裴捷, 毛本亮, 郝定盈, 苑伟, 颜勇, 吴帆, 王鹏珍, 王百林. 槲皮素调控肝缺血-再灌注损伤的研究进展及应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 244-249.
[12] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[13] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[14] 张艺, 任秀君, 郭孟玮, 赵雅芳, 李一凡, 李佳阳, 任晓暄, 邬继红, 卢海洋. 电针预处理对脑缺血再灌注大鼠行为学及外周血内皮祖细胞的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 71-77.
[15] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?