切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2017, Vol. 06 ›› Issue (06) : 504 -508. doi: 10.3877/cma.j.issn.2095-3232.2017.06.019

所属专题: 文献

基础研究

海肾荧光素酶基因标记肝癌细胞生物发光成像在小鼠肝癌活体示踪中应用
张丽娜1, 李征然1, 黄明声1, 王劲1, 郭若汨1, 唐文杰1,()   
  1. 1. 510630 广州,中山大学附属第三医院放射科
  • 收稿日期:2017-09-01 出版日期:2017-12-10
  • 通信作者: 唐文杰
  • 基金资助:
    国家自然科学基金(81271621,81172193); 广东省科技计划项目(2009B030801026)

Application of bioluminescence imaging of renilla luciferase labelling liver cancer cells in mice in vivo liver cancer tracking

Lina Zhang1, Zhengran Li1, Mingsheng Huang1, Jin Wang1, Ruomi Guo1, Wenjie Tang1,()   

  1. 1. Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2017-09-01 Published:2017-12-10
  • Corresponding author: Wenjie Tang
  • About author:
    Corresponding author: Tang Wenjie, Email:
引用本文:

张丽娜, 李征然, 黄明声, 王劲, 郭若汨, 唐文杰. 海肾荧光素酶基因标记肝癌细胞生物发光成像在小鼠肝癌活体示踪中应用[J]. 中华肝脏外科手术学电子杂志, 2017, 06(06): 504-508.

Lina Zhang, Zhengran Li, Mingsheng Huang, Jin Wang, Ruomi Guo, Wenjie Tang. Application of bioluminescence imaging of renilla luciferase labelling liver cancer cells in mice in vivo liver cancer tracking[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2017, 06(06): 504-508.

目的

探讨海肾荧光素酶(Rluc)标记肝癌细胞生物发光成像在小鼠肝癌活体示踪中应用价值。

方法

构建Rluc基因标记的Rluc-GFP-Hepa1-6肝癌细胞,利用流式细胞仪分选GFP表达阳性的稳定细胞;Rluc-GFP-Hepa1-6细胞行细胞生物发光成像,分析生物发光信号强度与细胞数量间相关性;同时将Rluc-GFP-Hepa1-6细胞接种于裸鼠皮下,建立移植瘤模型,行活体生物发光成像,定量监测肿瘤细胞在体内的生长过程。发光信号强度与细胞数量及肿瘤体积间关系采用线性回归分析。

结果

成功构建Rluc-GFP-Hepa1-6细胞株,经流式细胞仪分选后获得GFP阳性率高达95%的Rluc-GFP-Hepa1-6细胞。细胞生物发光成像结果显示,Rluc-GFP-Hepa1-6细胞发光信号强度与细胞数量间有相关性(R2=0.999)。活体生物发光成像显示,皮下肿瘤的发光信号强度与肿瘤体积存在正相关性(R2=0.887)。

结论

应用Rluc生物发光成像可成功监测小鼠肝癌皮下肿瘤模型的演进过程,不仅为研究肝癌体内生长、转移、治疗提供了理想的模型,而且为进一步研究肝癌的治疗效果提供了良好、无创的定量示踪手段。

Objective

To investigate the application value of bioluminescence imaging of ranilla luciferase (Rluc) labelling liver cancer cells in mice in vivo liver cancer tracking.

Methods

Rluc-GFP-Hepa1-6 liver cancer cells were constructed. The stable cells with positive expression of GFP were purified by using flow cytometry. Rluc-GFP-Hepa1-6 cells were used for cell bioluminescence imaging. The correlation between the bioluminescence signal intensity and cell quantity was analyzed. The mice model with grafted tumors was constructed by subcutaneous inoculation of Rluc-GFP-Hepa1-6 cells, and in vivo bioluminescent imaging was applied. The growth of tumor cells in the mice was quantitatively monitored. The correlation between the bioluminescence signal intensity, cell quantity and tumor size was analyzed using linear regression analysis.

Results

The Rluc-GFP-Hepa1-6 cell lines were successfully constructed. The GFP positive rate of Rluc-GFP-Hepa1-6 cells purified by flow cytometry was 95%. Cell bioluminescence imaging revealed that the bioluminescence signal intensity of Rluc-GFP-Hepa1-6 cells was significantly correlated with cell quantity (R2=0.999). In vivo bioluminescence imaging revealed that the bioluminescence signal intensity of subcutaneous tumors was significantly correlated with tumor size (R2=0.887).

Conclusions

Rluc bioluminescence imaging can successfully monitor the evolution of subcutaneous malignant tumors in mice model with liver cancer. It not only serves as an ideal model for studying the growth, metastasis and treatment of liver cancer, but also provides an excellent, minimally invasive quantitative tracking approach for evaluating the therapeutic efficacy of liver cancer.

图1 Rluc-GFP-Hepa1-6细胞的鉴定
图2 不同浓度的Rluc-GFP-Hepa1-6细胞生物发光成像
图3 裸鼠皮下接种Rluc-GFP-Hepa1-6细胞后的活体生物发光成像
[1]
Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma[J]. Semin Diagn Pathol, 2017, 34(2):153-159.
[2]
Dhanasekaran R, Limaye A, Cabrera R. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics[J]. Hepat Med, 2012(4):19-37.
[3]
Yan J, Fan Z, Wu X, et al. Circulating tumor cells are correlated with disease progression and treatment response in an orthotopic hepatocellular carcinoma model[J]. Cytometry A, 2015, 87(11):1020-1028.
[4]
Fan ZC, Yan J, Liu GD, et al. Real-time monitoring of rare circulating hepatocellular carcinoma cells in an orthotopic model by in vivo flow cytometry assesses resection on metastasis[J]. Cancer Res, 2012, 72(10):2683-2691.
[5]
Chen Q, Zhang XH, Massagué J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs[J]. Cancer Cell, 2011, 20(4):538-549.
[6]
Li G, Chi CW, Shao XF, et al. Application of molecular imaging technology in evaluating the inhibiting effect of apigenin in vivo on subcutaneous hepatocellular carcinoma[J]. Biochem Biophys Res Commun, 2017, 487(1):122-127.
[7]
de Almeida PE, van Rappard JR, Wu JC. In vivo bioluminescence for tracking cell fate and function[J]. Am J Physiol Heart Circ Physiol, 2011, 301(3):H663-671.
[8]
Li Z, Hu X, Mao J, et al. Optimization of mesenchymal stem cells (MSCs) delivery dose and route in mice with acute liver injury by bioluminescence imaging[J]. Mol Imaging Biol, 2015, 17(2):185-194.
[9]
Close DM, Xu T, Sayler GS, et al. In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals[J]. Sensors, 2011, 11(1):180-206.
[10]
Thalheimer A, Korb D, Bönicke L, et al. Noninvasive visualization of tumor growth in a human colorectal liver metastases xenograft model using bioluminescence in vivo imaging[J]. J Surg Res, 2013, 185(1):143-151.
[11]
Weber J, Haberkorn U, Mier W. Cancer stratification by molecular imaging[J]. Int J Mol Sci, 2015, 16(3):4918-4946.
[12]
Bannas P, Lenz A, Kunick V, et al. Molecular imaging of tumors with nanobodies and antibodies:timing and dosage are crucial factors for improved in vivo detection[J]. Contrast Media Mol Imaging, 2015, 10(5):367-378.
[13]
Du L, Xu WT, Fan QM, et al. Tumorigenesis and spontaneous metastasis by luciferase-labeled human xenograft osteosarcoma cells in nude mice[J]. Chin Med J, 2012, 125(22):4022-4030.
[14]
Zhou S, Zhao Z, Lin Y, et al. Suppression of pancreatic ductal adenocarcinoma growth by intratumoral delivery of attenuated Salmonella typhimurium using a dual fluorescent live tracking system[J]. Cancer Biol Ther, 2016, 17(7):732-740.
[15]
Al Faraj A, Shaik AP, Shaik AS. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker[J]. Int J Nanomedicine, 2014(10):157-168.
[16]
Jiang SN, Park SH, Lee HJ, et al. Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent[J]. Mol Ther, 2013, 21(11):1985-1995.
[17]
Leitão JM, Esteves da Silva JC. Firefly luciferase inhibition[J]. J Photochem Photobiol B, 2010, 101(1):1-8.
[18]
Kim MH, Kim MH, Kim KS, et al. In vivo monitoring of CD44+ cancer stem-like cells by γ-irradiation in breast cancer[J]. Int J Oncol, 2016, 48(6):2277-2286.
[19]
Everaert BR, Bergwerf I, De Vocht N, et al. Multimodal in vivo imaging reveals limited allograft survival, intrapulmonary cell trapping and minimal evidence for ischemia-directed BMSC homing[J]. BMC Biotechnol, 2012(12):93.
[1] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[2] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[3] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[4] 张文华, 陶焠, 胡添松. 不同部位外生型肝癌临床病理特点及其对术后肝内复发和预后影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 651-655.
[5] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[6] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[7] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[8] 叶文涛, 吴忠均, 廖锐. 癌旁组织ALOX15表达与肝癌根治性切除术后预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 708-712.
[9] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[10] 杜锡林, 谭凯, 贺小军, 白亮亮, 赵瑶瑶. 肝细胞癌转化治疗方式[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 597-601.
[11] 王峰杰, 王礼光, 廖珊, 刘颖, 符荣党, 陈焕伟. 腹腔镜右半肝切除术治疗肝癌的安全性与疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 517-522.
[12] 张海涛, 贾哲, 马超, 张其坤, 武聚山, 郭庆良, 曾道炳, 栗光明, 王孟龙. 手术切除与射频消融治疗血管周围型单发小肝癌临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 523-527.
[13] 吕瑶, 张婵, 陈建华, 张鸣青. 压力控制容量保证通气模式在腹腔镜肝细胞癌切除术中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 528-533.
[14] 杨秀君, 崔梦莹, 张丹, 曲仙智, 苗云皓, 盛基尧, 郑戈, 刘水, 张学文. 信迪利单抗联合仑伐替尼成功转化治疗不可切除肝癌一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 581-584.
[15] 何传超, 肖治宇. 晚期肝癌综合治疗模式与策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 486-489.
阅读次数
全文


摘要