切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2024, Vol. 13 ›› Issue (03) : 398 -403. doi: 10.3877/cma.j.issn.2095-3232.2024.03.024

综述

NLRP3炎症小体及其在肝脏缺血-再灌注损伤中的作用机制
张云飞1, 吐尔洪江·吐逊1,()   
  1. 1. 830054 乌鲁木齐,新疆医科大学第一附属医院消化血管外科中心 肝脏·腹腔镜外科;830054 乌鲁木齐,新疆医科大学省部共建中亚高发病成因与防治国家重点实验室
  • 收稿日期:2024-01-15 出版日期:2024-06-10
  • 通信作者: 吐尔洪江·吐逊
  • 基金资助:
    国家自然科学基金(82260411,82270632); 新疆维吾尔自治区科技厅重点实验室开放课题(2018D04002)

NLRP3 inflammasome and its mechanism in liver ischemia-reperfusion injury

Yunfei Zhang1, Tuxun Tuerhongjiang·1,()   

  1. 1. Department of Liver and Laparoscopic Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
  • Received:2024-01-15 Published:2024-06-10
  • Corresponding author: Tuxun Tuerhongjiang·
引用本文:

张云飞, 吐尔洪江·吐逊. NLRP3炎症小体及其在肝脏缺血-再灌注损伤中的作用机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 398-403.

Yunfei Zhang, Tuxun Tuerhongjiang·. NLRP3 inflammasome and its mechanism in liver ischemia-reperfusion injury[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(03): 398-403.

肝脏缺血-再灌注损伤(IRI)是指肝脏组织缺血一段时间后血流重新恢复却导致肝脏组织损伤加重的现象。炎症反应是引起肝脏IRI的主要原因之一,其中NLRP3炎症小体受体介导的炎症反应占主导地位。研究表明,通过抑制炎症小体的激活可以改善IRI。这篇综述总结了NLRP3介导炎症小体激活及调控的最新进展,以及它在肝脏IRI中的作用机制。

Liver ischemia-reperfusion injury (IRI) refers to the restoration of oxygenated blood flow to the liver after a period of liver ischemia, which exacerbates liver injury. Inflammatory reaction is one of the main causes of liver IRI, and inflammatory reaction mediated by NLRP3 inflammasome receptor is dominant. Studies have shown that IRI can be alleviated by inhibiting the activation of inflammasomes. In this article, the latest progress in NLRP3-mediated activation and regulation of inflammasomes, and its mechanism in liver IRI were reviewed.

[1]
Zhou CN, Yao W, Gong YN, et al. 22-oxacalcitriol protects myocardial ischemia-reperfusion injury by suppressing NF-κB/TNF-α pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(12):5495-5502.
[2]
Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Mol Cell, 2002, 10(2):417-426.
[3]
Lei-Leston AC, Murphy AG, Maloy KJ. Epithelial cell inflammasomes in intestinal immunity and inflammation[J]. Front Immunol, 2017, 8: 1168.
[4]
Strowig T, Henao-Mejia J, Elinav E, et al. Inflammasomes in health and disease[J]. Nature, 2012, 481(7381):278-286.
[5]
Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8):477-489.
[6]
Py BF, Kim MS, Vakifahmetoglu-Norberg H, et al. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity[J]. Mol Cell, 2013, 49(2):331-338.
[7]
Migliorini P, Italiani P, Pratesi F, et al. The IL-1 family cytokines and receptors in autoimmune diseases[J]. Autoimmun Rev, 2020, 19(9):102617.
[8]
Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11[J]. Nature, 2011, 479(7371):117-121.
[9]
Napier BA, Brubaker SW, Sweeney TE, et al. Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity[J]. J Exp Med, 2016, 213(11):2365-2382.
[10]
Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS[J]. Nature, 2014, 514(7521):187-192.
[11]
Man S M, Karki R, Sasai M, et al. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes[J]. Cell, 2016, 167(2):382-396, e17.
[12]
Chu LH, Indramohan M, Ratsimandresy RA, et al. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages[J]. Nat Commun, 2018, 9(1):996.
[13]
Dar WA, Sullivan E, Bynon JS, et al. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5):788-801.
[14]
Gong T, Zhou R. ApoC3: an 'alarmin' triggering sterile inflammation[J]. Nat Immunol, 2020, 21(1):9-11.
[15]
Katwal G, Baral D, Fan X, et al. SIRT3 a major player in attenuation of hepatic ischemia-reperfusion injury by reducing ROS via its downstream mediators: SOD2, CYP-D, and HIF-1α[J]. Oxid Med Cell Longev, 2018:2976957.
[16]
Zhang Y, Yuan D, Yao W, et al. Hyperglycemia aggravates hepatic ischemia reperfusion injury by inducing chronic oxidative stress and inflammation[J]. Oxid Med Cell Longev, 2016:3919627.
[17]
He Y, Zeng MY, Yang D, et al. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux[J]. Nature, 2016, 530(7590):354-357.
[18]
Ohashi K, Ouchi N, Higuchi A, et al. LKB1 deficiency in Tie2-Cre-expressing cells impairs ischemia-induced angiogenesis[J]. J Biol Chem, 2010, 285(29):22291-22298.
[19]
Liu Z, Zhang W, Zhang M, et al. Liver kinase B1 suppresses lipopolysaccharide-induced nuclear factor κB (NF-κB) activation in macrophages[J]. J Biol Chem, 2015, 290(4):2312-2320.
[20]
Miyauchi T, Uchida Y, Kadono K, et al. Up-regulation of FOXO1 and reduced inflammation by β-hydroxybutyric acid are essential diet restriction benefits against liver injury[J]. Proc Natl Acad Sci U S A, 2019, 116(27):13533-13542.
[21]
Xu Y, Johansson M, Karlsson A. Human UMP-CMP kinase 2, a novel nucleoside monophosphate kinase localized in mitochondria[J]. J Biol Chem, 2008, 283(3):1563-1571.
[22]
Luo Y, Zheng D, Mou T, et al. CMPK2 accelerates liver ischemia/reperfusion injury via the NLRP3 signaling pathway[J]. Exp Ther Med, 2021, 22(6):1358.
[23]
Fukuura K, Inoue Y, Miyajima C, et al. The ubiquitin-specific protease USP17 prevents cellular senescence by stabilizing the methyltransferase SET8 and transcriptionally repressing p21[J]. J Biol Chem, 2019, 294(44):16429-16439.
[24]
Luo Y, Huang Z, Mou T, et al. SET8 mitigates hepatic ischemia/reperfusion injury in mice by suppressing MARK4/NLRP3 inflammasome pathway[J]. Life Sci, 2021, 273:119286.
[25]
Pantazi E, Folch-Puy E, Bejaoui M, et al. PPARα agonist WY-14643induces SIRT1 activity in rat fatty liver ischemia-reperfusion injury[J]. Biomed Res Int, 2015:894679.
[26]
Li F, Zhang L, Xue H, et al. SIRT1 alleviates hepatic ischemia-reperfusion injury via the miR-182-mediated XBP1/NLRP3 pathway[J]. Mol Ther Nucleic Acids, 2021, 23:1066-1077.
[27]
Wang Y, Zhao X, Wu X, et al. MicroRNA-182 mediates Sirt1-induced diabetic corneal nerve regeneration[J]. Diabetes, 2016, 65(7):2020-2031.
[28]
Jiang W, Liu G, Tang W. MicroRNA-182-5p ameliorates liver ischemia-reperfusion injury by suppressing toll-like receptor 4[J]. Transplant Proc, 2016, 48(8):2809-2814.
[29]
Radtke F, MacDonald HR, Tacchini-Cottier F. Regulation of innate and adaptive immunity by Notch[J]. Nat Rev Immunol, 2013, 13(6):427-437.
[30]
Hu X, Chung AY, Wu I, et al. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways[J]. Immunity, 2008, 29(5):691-703.
[31]
Kim NH, Cha YH, Lee J, et al. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress[J]. Nat Commun, 2017, 8: 14374.
[32]
Jin Y, Li C, Xu D, et al. Jagged1-mediated myeloid Notch1 signaling activates HSF1/Snail and controls NLRP3 inflammasome activation in liver inflammatory injury[J]. Cell Mol Immunol, 2020, 17(12):1245-1256.
[33]
Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity[J]. Nat Rev Immunol, 2013, 13(10):722-737.
[34]
Xia Y, Liu N, Xie X, et al. The macrophage-specific V-ATPase subunit ATP6V0D2 restricts inflammasome activation and bacterial infection by facilitating autophagosome-lysosome fusion[J]. Autophagy, 2019, 15(6):960-975.
[35]
Wang Z, Wang H, Chen X, et al. Inhibiting ATP6V0D2 aggravates liver ischemia-reperfusion injury by promoting NLRP3 activation via impairing autophagic flux independent of Notch1/Hes1[J]. J Immunol Res, 2021:6670495.
[36]
Hu J, Li G, Qu L, et al. TMEM166/EVA1A interacts with ATG16L1 and induces autophagosome formation and cell death[J]. Cell Death Dis, 2016, 7(8):e2323.
[37]
Wang Z, Han S, Chen X, et al. Eva1a inhibits NLRP3 activation to reduce liver ischemia-reperfusion injury via inducing autophagy in kupffer cells[J]. Mol Immunol, 2021, 132:82-92.
[38]
Vargas R, Videla LA. Thyroid hormone suppresses ischemia-reperfusion-induced liver NLRP3 inflammasome activation: role of AMP-activated protein kinase[J]. Immunol Lett, 2017, 184:92-97.
[39]
El-Sisi AEDES, Sokar SS, Shebl AM, et al. Octreotide and melatonin alleviate inflammasome-induced pyroptosis through inhibition of TLR4-NF-κB-NLRP3 pathway in hepatic ischemia/reperfusion injury[J]. Toxicol Appl Pharmacol, 2021, 410:115340.
[40]
Inoue Y, Shirasuna K, Kimura H, et al. NLRP3 regulates neutrophil functions and contributes to hepatic ischemia-reperfusion injury independently of inflammasomes[J]. J Immunol, 2014, 192(9):4342-4351.
[41]
Kamo N, Ke B, Ghaffari AA, et al. ASC/caspase-1/IL-1β signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury[J]. Hepatology, 2013, 58(1):351-362.
[42]
Huang H, Chen HW, Evankovich J, et al. Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury[J]. J Immunol, 2013, 191(5):2665-2679.
[43]
Zhong W, Rao Z, Rao J, et al. Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated NLRP3 activation in macrophages[J]. Aging Cell, 2020, 19(8):e13186.
[1] 罗敏华, 王文平, 孔文韬. 肝脏炎性假瘤的超声造影表现及其诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(03): 297-303.
[2] 许彬, 王丽, 陈瑞, 沈奕, 陆件. 瞬时受体电位粘脂素1介导细胞自噬在远端缺血后处理保护大鼠脑缺血-再灌注损伤中的作用研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 180-187.
[3] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[4] 陈桂华, 钟小玲, 谢雨, 王慧, 谢江, 杨涛毅. 合并肝脏疾病特殊健康状态儿童疫苗预防接种及时性临床分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 431-439.
[5] 叶美妮, 刘思嘉, 臧玉玮, 刘云建. 肝硬化门静脉血栓形成的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 379-384.
[6] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[7] 刘连新, 张树庚. 腹腔镜左半肝联合左尾状叶切除术[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 368-368.
[8] 王泽钦, 洪军, 王雅平, 王健, 蒿汉坤. W型肝脏悬吊技术在全腹腔镜下全胃切除术中的应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 218-221.
[9] 任江波, 李丽, 王萍. 阻断PI3K/Akt信号通路促进低表达FoxA2肝脏前体细胞对分化诱导剂应答并朝肝细胞方向分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 336-343.
[10] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[11] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[12] 雷永琪, 刘新阳, 杨黎渝, 铁学宏, 俞星新, 耿志达, 刘雨, 陈政良, 惠鹏, 梁英健. 肝脏血管周上皮样细胞肿瘤合并贫血一例并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 710-718.
[13] 王燕, 梁海乾, 郭姗姗. 炎症小体在创伤性脑损伤中作用的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 177-181.
[14] 孙伟, 徐东升. 减重与代谢外科肝脏悬吊方式研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 261-268.
[15] 向林, 江云颂, 程吕佳, 关炳生, 杨景哥. 生长素释放肽在肥胖治疗中的潜在应用价值研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 235-241.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?