切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2024, Vol. 13 ›› Issue (03) : 398 -403. doi: 10.3877/cma.j.issn.2095-3232.2024.03.024

综述

NLRP3炎症小体及其在肝脏缺血-再灌注损伤中的作用机制
张云飞1, 吐尔洪江·吐逊1,()   
  1. 1. 830054 乌鲁木齐,新疆医科大学第一附属医院消化血管外科中心 肝脏·腹腔镜外科;830054 乌鲁木齐,新疆医科大学省部共建中亚高发病成因与防治国家重点实验室
  • 收稿日期:2024-01-15 出版日期:2024-06-10
  • 通信作者: 吐尔洪江·吐逊
  • 基金资助:
    国家自然科学基金(82260411,82270632); 新疆维吾尔自治区科技厅重点实验室开放课题(2018D04002)

NLRP3 inflammasome and its mechanism in liver ischemia-reperfusion injury

Yunfei Zhang1, Tuxun Tuerhongjiang·1,()   

  1. 1. Department of Liver and Laparoscopic Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
  • Received:2024-01-15 Published:2024-06-10
  • Corresponding author: Tuxun Tuerhongjiang·
引用本文:

张云飞, 吐尔洪江·吐逊. NLRP3炎症小体及其在肝脏缺血-再灌注损伤中的作用机制[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 398-403.

Yunfei Zhang, Tuxun Tuerhongjiang·. NLRP3 inflammasome and its mechanism in liver ischemia-reperfusion injury[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(03): 398-403.

肝脏缺血-再灌注损伤(IRI)是指肝脏组织缺血一段时间后血流重新恢复却导致肝脏组织损伤加重的现象。炎症反应是引起肝脏IRI的主要原因之一,其中NLRP3炎症小体受体介导的炎症反应占主导地位。研究表明,通过抑制炎症小体的激活可以改善IRI。这篇综述总结了NLRP3介导炎症小体激活及调控的最新进展,以及它在肝脏IRI中的作用机制。

Liver ischemia-reperfusion injury (IRI) refers to the restoration of oxygenated blood flow to the liver after a period of liver ischemia, which exacerbates liver injury. Inflammatory reaction is one of the main causes of liver IRI, and inflammatory reaction mediated by NLRP3 inflammasome receptor is dominant. Studies have shown that IRI can be alleviated by inhibiting the activation of inflammasomes. In this article, the latest progress in NLRP3-mediated activation and regulation of inflammasomes, and its mechanism in liver IRI were reviewed.

[1]
Zhou CN, Yao W, Gong YN, et al. 22-oxacalcitriol protects myocardial ischemia-reperfusion injury by suppressing NF-κB/TNF-α pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(12):5495-5502.
[2]
Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Mol Cell, 2002, 10(2):417-426.
[3]
Lei-Leston AC, Murphy AG, Maloy KJ. Epithelial cell inflammasomes in intestinal immunity and inflammation[J]. Front Immunol, 2017, 8: 1168.
[4]
Strowig T, Henao-Mejia J, Elinav E, et al. Inflammasomes in health and disease[J]. Nature, 2012, 481(7381):278-286.
[5]
Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8):477-489.
[6]
Py BF, Kim MS, Vakifahmetoglu-Norberg H, et al. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity[J]. Mol Cell, 2013, 49(2):331-338.
[7]
Migliorini P, Italiani P, Pratesi F, et al. The IL-1 family cytokines and receptors in autoimmune diseases[J]. Autoimmun Rev, 2020, 19(9):102617.
[8]
Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11[J]. Nature, 2011, 479(7371):117-121.
[9]
Napier BA, Brubaker SW, Sweeney TE, et al. Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity[J]. J Exp Med, 2016, 213(11):2365-2382.
[10]
Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS[J]. Nature, 2014, 514(7521):187-192.
[11]
Man S M, Karki R, Sasai M, et al. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes[J]. Cell, 2016, 167(2):382-396, e17.
[12]
Chu LH, Indramohan M, Ratsimandresy RA, et al. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages[J]. Nat Commun, 2018, 9(1):996.
[13]
Dar WA, Sullivan E, Bynon JS, et al. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5):788-801.
[14]
Gong T, Zhou R. ApoC3: an 'alarmin' triggering sterile inflammation[J]. Nat Immunol, 2020, 21(1):9-11.
[15]
Katwal G, Baral D, Fan X, et al. SIRT3 a major player in attenuation of hepatic ischemia-reperfusion injury by reducing ROS via its downstream mediators: SOD2, CYP-D, and HIF-1α[J]. Oxid Med Cell Longev, 2018:2976957.
[16]
Zhang Y, Yuan D, Yao W, et al. Hyperglycemia aggravates hepatic ischemia reperfusion injury by inducing chronic oxidative stress and inflammation[J]. Oxid Med Cell Longev, 2016:3919627.
[17]
He Y, Zeng MY, Yang D, et al. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux[J]. Nature, 2016, 530(7590):354-357.
[18]
Ohashi K, Ouchi N, Higuchi A, et al. LKB1 deficiency in Tie2-Cre-expressing cells impairs ischemia-induced angiogenesis[J]. J Biol Chem, 2010, 285(29):22291-22298.
[19]
Liu Z, Zhang W, Zhang M, et al. Liver kinase B1 suppresses lipopolysaccharide-induced nuclear factor κB (NF-κB) activation in macrophages[J]. J Biol Chem, 2015, 290(4):2312-2320.
[20]
Miyauchi T, Uchida Y, Kadono K, et al. Up-regulation of FOXO1 and reduced inflammation by β-hydroxybutyric acid are essential diet restriction benefits against liver injury[J]. Proc Natl Acad Sci U S A, 2019, 116(27):13533-13542.
[21]
Xu Y, Johansson M, Karlsson A. Human UMP-CMP kinase 2, a novel nucleoside monophosphate kinase localized in mitochondria[J]. J Biol Chem, 2008, 283(3):1563-1571.
[22]
Luo Y, Zheng D, Mou T, et al. CMPK2 accelerates liver ischemia/reperfusion injury via the NLRP3 signaling pathway[J]. Exp Ther Med, 2021, 22(6):1358.
[23]
Fukuura K, Inoue Y, Miyajima C, et al. The ubiquitin-specific protease USP17 prevents cellular senescence by stabilizing the methyltransferase SET8 and transcriptionally repressing p21[J]. J Biol Chem, 2019, 294(44):16429-16439.
[24]
Luo Y, Huang Z, Mou T, et al. SET8 mitigates hepatic ischemia/reperfusion injury in mice by suppressing MARK4/NLRP3 inflammasome pathway[J]. Life Sci, 2021, 273:119286.
[25]
Pantazi E, Folch-Puy E, Bejaoui M, et al. PPARα agonist WY-14643induces SIRT1 activity in rat fatty liver ischemia-reperfusion injury[J]. Biomed Res Int, 2015:894679.
[26]
Li F, Zhang L, Xue H, et al. SIRT1 alleviates hepatic ischemia-reperfusion injury via the miR-182-mediated XBP1/NLRP3 pathway[J]. Mol Ther Nucleic Acids, 2021, 23:1066-1077.
[27]
Wang Y, Zhao X, Wu X, et al. MicroRNA-182 mediates Sirt1-induced diabetic corneal nerve regeneration[J]. Diabetes, 2016, 65(7):2020-2031.
[28]
Jiang W, Liu G, Tang W. MicroRNA-182-5p ameliorates liver ischemia-reperfusion injury by suppressing toll-like receptor 4[J]. Transplant Proc, 2016, 48(8):2809-2814.
[29]
Radtke F, MacDonald HR, Tacchini-Cottier F. Regulation of innate and adaptive immunity by Notch[J]. Nat Rev Immunol, 2013, 13(6):427-437.
[30]
Hu X, Chung AY, Wu I, et al. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways[J]. Immunity, 2008, 29(5):691-703.
[31]
Kim NH, Cha YH, Lee J, et al. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress[J]. Nat Commun, 2017, 8: 14374.
[32]
Jin Y, Li C, Xu D, et al. Jagged1-mediated myeloid Notch1 signaling activates HSF1/Snail and controls NLRP3 inflammasome activation in liver inflammatory injury[J]. Cell Mol Immunol, 2020, 17(12):1245-1256.
[33]
Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity[J]. Nat Rev Immunol, 2013, 13(10):722-737.
[34]
Xia Y, Liu N, Xie X, et al. The macrophage-specific V-ATPase subunit ATP6V0D2 restricts inflammasome activation and bacterial infection by facilitating autophagosome-lysosome fusion[J]. Autophagy, 2019, 15(6):960-975.
[35]
Wang Z, Wang H, Chen X, et al. Inhibiting ATP6V0D2 aggravates liver ischemia-reperfusion injury by promoting NLRP3 activation via impairing autophagic flux independent of Notch1/Hes1[J]. J Immunol Res, 2021:6670495.
[36]
Hu J, Li G, Qu L, et al. TMEM166/EVA1A interacts with ATG16L1 and induces autophagosome formation and cell death[J]. Cell Death Dis, 2016, 7(8):e2323.
[37]
Wang Z, Han S, Chen X, et al. Eva1a inhibits NLRP3 activation to reduce liver ischemia-reperfusion injury via inducing autophagy in kupffer cells[J]. Mol Immunol, 2021, 132:82-92.
[38]
Vargas R, Videla LA. Thyroid hormone suppresses ischemia-reperfusion-induced liver NLRP3 inflammasome activation: role of AMP-activated protein kinase[J]. Immunol Lett, 2017, 184:92-97.
[39]
El-Sisi AEDES, Sokar SS, Shebl AM, et al. Octreotide and melatonin alleviate inflammasome-induced pyroptosis through inhibition of TLR4-NF-κB-NLRP3 pathway in hepatic ischemia/reperfusion injury[J]. Toxicol Appl Pharmacol, 2021, 410:115340.
[40]
Inoue Y, Shirasuna K, Kimura H, et al. NLRP3 regulates neutrophil functions and contributes to hepatic ischemia-reperfusion injury independently of inflammasomes[J]. J Immunol, 2014, 192(9):4342-4351.
[41]
Kamo N, Ke B, Ghaffari AA, et al. ASC/caspase-1/IL-1β signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury[J]. Hepatology, 2013, 58(1):351-362.
[42]
Huang H, Chen HW, Evankovich J, et al. Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury[J]. J Immunol, 2013, 191(5):2665-2679.
[43]
Zhong W, Rao Z, Rao J, et al. Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated NLRP3 activation in macrophages[J]. Aging Cell, 2020, 19(8):e13186.
[1] 马旦杰, 黄品同, 徐琛, 周芳芳, 潘敏强. 超声造影LI-RADS系统联合甲胎蛋白对有无高危因素背景人群肝细胞癌的诊断价值[J]. 中华医学超声杂志(电子版), 2024, 21(03): 288-296.
[2] 罗敏华, 王文平, 孔文韬. 肝脏炎性假瘤的超声造影表现及其诊断价值[J]. 中华医学超声杂志(电子版), 2024, 21(03): 297-303.
[3] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[4] 吕衡, 董理聪, 谢海琴, 赵卓非, 刘俐, 孙德胜. 基于CT-超声对照的肝脏局灶性病变超声漏诊状况分析:一项单中心横断面质量控制调查报告[J]. 中华医学超声杂志(电子版), 2023, 20(07): 712-716.
[5] 鲁梦远, 赵学刚, 郝嘉文, 盖晨阳, 李聪颖, 张晶, 张庆富. 高压电烧伤大鼠肝脏氧化应激损伤及灯盏花素的干预作用[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 113-118.
[6] 刘连新, 张树庚. 腹腔镜左半肝联合左尾状叶切除术[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 368-368.
[7] 刘超凡, 王文越, 杨珵璨, 朱冬梓, 王兵. 胃袖状切除术上调循环Nrg4浓度抑制肝脏脂肪酸合成改善肥胖小鼠肝脏脂肪变性[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 133-136.
[8] 阿卜杜萨拉木·图尔荪麦麦提, 吐尔洪江·吐逊, 温浩. 肝脏缺血-再灌注损伤与cGAS-STING信号通路[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 394-397.
[9] 裴捷, 毛本亮, 郝定盈, 苑伟, 颜勇, 吴帆, 王鹏珍, 王百林. 槲皮素调控肝缺血-再灌注损伤的研究进展及应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 244-249.
[10] 唐亦骁, 何心渝, 徐骁, 卫强. 肝切除术中肝血流控制技术研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 134-139.
[11] 李乐, 朱志军. 铁死亡及其在肝脏缺血-再灌注损伤中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 109-113.
[12] 史亚波, 李扬, 黄长文. 缺血-再灌注损伤促进肝癌复发机制的研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 96-99.
[13] 唐灿, 李向阳, 秦浩然, 李婧, 王天云, 柯阳, 朱红. 原发性肝脏神经内分泌肿瘤单中心12例诊治与疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 674-680.
[14] 蒋启红, 任勇军. 钆塞酸二钠增强MRI在评估肝功能的研究进展[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 183-187.
[15] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
阅读次数
全文


摘要