[1] |
Zhou CN, Yao W, Gong YN, et al. 22-oxacalcitriol protects myocardial ischemia-reperfusion injury by suppressing NF-κB/TNF-α pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(12):5495-5502.
|
[2] |
Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Mol Cell, 2002, 10(2):417-426.
|
[3] |
Lei-Leston AC, Murphy AG, Maloy KJ. Epithelial cell inflammasomes in intestinal immunity and inflammation[J]. Front Immunol, 2017, 8: 1168.
|
[4] |
Strowig T, Henao-Mejia J, Elinav E, et al. Inflammasomes in health and disease[J]. Nature, 2012, 481(7381):278-286.
|
[5] |
Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8):477-489.
|
[6] |
Py BF, Kim MS, Vakifahmetoglu-Norberg H, et al. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity[J]. Mol Cell, 2013, 49(2):331-338.
|
[7] |
Migliorini P, Italiani P, Pratesi F, et al. The IL-1 family cytokines and receptors in autoimmune diseases[J]. Autoimmun Rev, 2020, 19(9):102617.
|
[8] |
Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11[J]. Nature, 2011, 479(7371):117-121.
|
[9] |
Napier BA, Brubaker SW, Sweeney TE, et al. Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity[J]. J Exp Med, 2016, 213(11):2365-2382.
|
[10] |
Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS[J]. Nature, 2014, 514(7521):187-192.
|
[11] |
Man S M, Karki R, Sasai M, et al. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes[J]. Cell, 2016, 167(2):382-396, e17.
|
[12] |
Chu LH, Indramohan M, Ratsimandresy RA, et al. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages[J]. Nat Commun, 2018, 9(1):996.
|
[13] |
Dar WA, Sullivan E, Bynon JS, et al. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5):788-801.
|
[14] |
Gong T, Zhou R. ApoC3: an 'alarmin' triggering sterile inflammation[J]. Nat Immunol, 2020, 21(1):9-11.
|
[15] |
Katwal G, Baral D, Fan X, et al. SIRT3 a major player in attenuation of hepatic ischemia-reperfusion injury by reducing ROS via its downstream mediators: SOD2, CYP-D, and HIF-1α[J]. Oxid Med Cell Longev, 2018:2976957.
|
[16] |
Zhang Y, Yuan D, Yao W, et al. Hyperglycemia aggravates hepatic ischemia reperfusion injury by inducing chronic oxidative stress and inflammation[J]. Oxid Med Cell Longev, 2016:3919627.
|
[17] |
He Y, Zeng MY, Yang D, et al. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux[J]. Nature, 2016, 530(7590):354-357.
|
[18] |
Ohashi K, Ouchi N, Higuchi A, et al. LKB1 deficiency in Tie2-Cre-expressing cells impairs ischemia-induced angiogenesis[J]. J Biol Chem, 2010, 285(29):22291-22298.
|
[19] |
Liu Z, Zhang W, Zhang M, et al. Liver kinase B1 suppresses lipopolysaccharide-induced nuclear factor κB (NF-κB) activation in macrophages[J]. J Biol Chem, 2015, 290(4):2312-2320.
|
[20] |
Miyauchi T, Uchida Y, Kadono K, et al. Up-regulation of FOXO1 and reduced inflammation by β-hydroxybutyric acid are essential diet restriction benefits against liver injury[J]. Proc Natl Acad Sci U S A, 2019, 116(27):13533-13542.
|
[21] |
Xu Y, Johansson M, Karlsson A. Human UMP-CMP kinase 2, a novel nucleoside monophosphate kinase localized in mitochondria[J]. J Biol Chem, 2008, 283(3):1563-1571.
|
[22] |
Luo Y, Zheng D, Mou T, et al. CMPK2 accelerates liver ischemia/reperfusion injury via the NLRP3 signaling pathway[J]. Exp Ther Med, 2021, 22(6):1358.
|
[23] |
Fukuura K, Inoue Y, Miyajima C, et al. The ubiquitin-specific protease USP17 prevents cellular senescence by stabilizing the methyltransferase SET8 and transcriptionally repressing p21[J]. J Biol Chem, 2019, 294(44):16429-16439.
|
[24] |
Luo Y, Huang Z, Mou T, et al. SET8 mitigates hepatic ischemia/reperfusion injury in mice by suppressing MARK4/NLRP3 inflammasome pathway[J]. Life Sci, 2021, 273:119286.
|
[25] |
Pantazi E, Folch-Puy E, Bejaoui M, et al. PPARα agonist WY-14643induces SIRT1 activity in rat fatty liver ischemia-reperfusion injury[J]. Biomed Res Int, 2015:894679.
|
[26] |
Li F, Zhang L, Xue H, et al. SIRT1 alleviates hepatic ischemia-reperfusion injury via the miR-182-mediated XBP1/NLRP3 pathway[J]. Mol Ther Nucleic Acids, 2021, 23:1066-1077.
|
[27] |
Wang Y, Zhao X, Wu X, et al. MicroRNA-182 mediates Sirt1-induced diabetic corneal nerve regeneration[J]. Diabetes, 2016, 65(7):2020-2031.
|
[28] |
Jiang W, Liu G, Tang W. MicroRNA-182-5p ameliorates liver ischemia-reperfusion injury by suppressing toll-like receptor 4[J]. Transplant Proc, 2016, 48(8):2809-2814.
|
[29] |
Radtke F, MacDonald HR, Tacchini-Cottier F. Regulation of innate and adaptive immunity by Notch[J]. Nat Rev Immunol, 2013, 13(6):427-437.
|
[30] |
Hu X, Chung AY, Wu I, et al. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways[J]. Immunity, 2008, 29(5):691-703.
|
[31] |
Kim NH, Cha YH, Lee J, et al. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress[J]. Nat Commun, 2017, 8: 14374.
|
[32] |
Jin Y, Li C, Xu D, et al. Jagged1-mediated myeloid Notch1 signaling activates HSF1/Snail and controls NLRP3 inflammasome activation in liver inflammatory injury[J]. Cell Mol Immunol, 2020, 17(12):1245-1256.
|
[33] |
Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity[J]. Nat Rev Immunol, 2013, 13(10):722-737.
|
[34] |
Xia Y, Liu N, Xie X, et al. The macrophage-specific V-ATPase subunit ATP6V0D2 restricts inflammasome activation and bacterial infection by facilitating autophagosome-lysosome fusion[J]. Autophagy, 2019, 15(6):960-975.
|
[35] |
Wang Z, Wang H, Chen X, et al. Inhibiting ATP6V0D2 aggravates liver ischemia-reperfusion injury by promoting NLRP3 activation via impairing autophagic flux independent of Notch1/Hes1[J]. J Immunol Res, 2021:6670495.
|
[36] |
Hu J, Li G, Qu L, et al. TMEM166/EVA1A interacts with ATG16L1 and induces autophagosome formation and cell death[J]. Cell Death Dis, 2016, 7(8):e2323.
|
[37] |
Wang Z, Han S, Chen X, et al. Eva1a inhibits NLRP3 activation to reduce liver ischemia-reperfusion injury via inducing autophagy in kupffer cells[J]. Mol Immunol, 2021, 132:82-92.
|
[38] |
Vargas R, Videla LA. Thyroid hormone suppresses ischemia-reperfusion-induced liver NLRP3 inflammasome activation: role of AMP-activated protein kinase[J]. Immunol Lett, 2017, 184:92-97.
|
[39] |
El-Sisi AEDES, Sokar SS, Shebl AM, et al. Octreotide and melatonin alleviate inflammasome-induced pyroptosis through inhibition of TLR4-NF-κB-NLRP3 pathway in hepatic ischemia/reperfusion injury[J]. Toxicol Appl Pharmacol, 2021, 410:115340.
|
[40] |
Inoue Y, Shirasuna K, Kimura H, et al. NLRP3 regulates neutrophil functions and contributes to hepatic ischemia-reperfusion injury independently of inflammasomes[J]. J Immunol, 2014, 192(9):4342-4351.
|
[41] |
Kamo N, Ke B, Ghaffari AA, et al. ASC/caspase-1/IL-1β signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury[J]. Hepatology, 2013, 58(1):351-362.
|
[42] |
Huang H, Chen HW, Evankovich J, et al. Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury[J]. J Immunol, 2013, 191(5):2665-2679.
|
[43] |
Zhong W, Rao Z, Rao J, et al. Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated NLRP3 activation in macrophages[J]. Aging Cell, 2020, 19(8):e13186.
|