切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2018, Vol. 07 ›› Issue (03) : 236 -240. doi: 10.3877/cma.j.issn.2095-3232.2018.03.016

所属专题: 文献

基础研究

癌基因SKA3在肝癌细胞增殖调控中的作用及机制
唐建信1, 李进军1, 梁梓明1, 姜楠1,()   
  1. 1. 510630 广州,中山大学附属第三医院肝脏外科 肝移植中心
  • 收稿日期:2018-03-16 出版日期:2018-06-10
  • 通信作者: 姜楠
  • 基金资助:
    国家自然科学基金(81572368); 广东省自然科学基金(2016A030313278)

Role and mechanism of oncogene SKA3 in proliferation regulation of hepatocellular carcinoma cells

Jianxin Tang1, Jinjun Li1, Ziming Liang1, Nan Jiang1,()   

  1. 1. Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2018-03-16 Published:2018-06-10
  • Corresponding author: Nan Jiang
  • About author:
    Corresponding author: Jiang Nan, Email:
引用本文:

唐建信, 李进军, 梁梓明, 姜楠. 癌基因SKA3在肝癌细胞增殖调控中的作用及机制[J]. 中华肝脏外科手术学电子杂志, 2018, 07(03): 236-240.

Jianxin Tang, Jinjun Li, Ziming Liang, Nan Jiang. Role and mechanism of oncogene SKA3 in proliferation regulation of hepatocellular carcinoma cells[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2018, 07(03): 236-240.

目的

探讨癌基因纺锤体与着丝粒相关蛋白3(SKA3)在肝癌细胞增殖调控中的作用及机制。

方法

采用Western blot和RT-PCR检测肝癌组织和细胞SKA3表达水平。采用慢病毒感染构建SKA3过表达组(Huh7-SKA3)和对照组(Huh7-Vector),构建SKA3干扰组(Huh7-shSKA3)和对照组(Huh7-Scramble)细胞模型。采用MTT法和细胞克隆形成实验检测细胞增殖能力,流式细胞仪检测细胞周期,Western blot和RT-PCR检测细胞周期相关蛋白的表达。实验数据比较采用t检验。

结果

肝癌组织和Huh7肝癌细胞SKA3蛋白表达明显增强,mRNA表达量分别为15.46±2.10、9.26±0.80,明显高于正常肝组织和LO2正常肝细胞的1.48±0.17、1.11±0.07(t=6.58,10.08;P<0.05)。细胞生长曲线显示过表达组细胞的增殖能力明显强于对照组,干扰组细胞的增殖能力低于其对照组。过表达组细胞克隆数为(259±20)个,明显高于对照组的(97±11)个(t=9.12,P<0.05),干扰组细胞克隆数为(11±2)个,明显少于对照组的(97±11)个(t=-8.13,P<0.05)。过表达组G2/M期和S期细胞比率分别为(5.5±0.6)%和(41.9±3.6)%,对照组相应为(15.8±1.5)%和(31.9±3.3)%,差异有统计学意义(t=-10.89,6.39;P<0.05),而干扰组G1/G0期和S期细胞比率分别为(71.7±6.1)%、(20.2±2.9)%,对照组相应为(53.4±5.4)%、(31.3±4.2)%,差异有统计学意义(t=8.59,-5.17;P<0.05)。

结论

SKA3在肝癌中高表达,可促进肝癌细胞增殖,可能与促进细胞周期G1期进入S期有关。

Objective

To investigate the role and mechanism of oncogene spindle and kinetochore associated complex subunit 3 (SKA3) in the proliferation regulation of hepatocellular carcinoma (HCC) cells.

Methods

The expression of SKA3 in HCC tissues and cells was detected by Western blot and RT-PCR. SKA3 overexpression group (Huh7-SKA3) and control group (Huh7-Vector) were constructed using lentivirus transfection. Cell models of SKA3 interference group (Huh7-shSKA3) and control group (Huh7-Scramble) were constructed as well. The ability of cell proliferation was detected by MTT assay and cell clony formation assay. The cell cycle was detected by flow cytometry, and the expression of cyclin related proteins was detected by Western blot and RT-PCR. The experimental data were compared by t test.

Results

The expression of SKA3 protein in HCC tissues and Huh7 HCC cells increased significantly, and the expression level of mRNA was respectively 15.46±2.10 and 9.26±0.80, significantly higher than 1.48±0.17 and 1.11±0.07 of normal liver tissues and normal liver cells LO2 (t=6.58, 10.08; P<0.05). The cell growth curve showed that the proliferation ability of cells in overexpression group was significantly better than those in control group, and the proliferation ability of cells in interference group was lower than those in control group. The number of cell clones in the overexpression group was 259±20, significantly higher than 97±11 in control group (t=9.12, P<0.05), and the number of cell clones in interference group was 11±2, significantly lower than 97±11 in control group (t=-8.13, P<0.05). The ratio of phase G2/M and phase S in overexpression group was respectively (5.5±0.6)% and (41.9±3.6)%, and was correspondingly (15.8±1.5)% and (31.9±3.3)% in control group, and significant differences were observed (t=-10.89, 6.39; P<0.05). The ratio of phase G1/G0 and phase S in interference group was respectively (71.7±6.1)% and (20.2±2.9)%, and was correspondingly (53.4±5.4)% and (31.3±4.2)% in control group, and significant differences were observed (t=8.59, -5.17; P<0.05).

Conclusions

SKA3 is highly expressed in HCC and can promote the proliferation of HCC cells, which may be related to its promotion of cell cycle from phase G1 to phase S.

图1 Western blot检测SKA3在肝癌组织和细胞中高表达
图2 MTT法检测肝癌细胞的生长曲线
图3 RT-PCR检测肝癌细胞周期相关蛋白表达
[1]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
[2]
Krenzien F, Schmelzle M, Struecker B, et al. Liver transplantation and liver resection for cirrhotic patients with hepatocellular carcinoma: comparison of long-term survivals[J]. J Gastrointest Surg, 2018, DOI: 10.1007/s11605-018-3690-4[Epub ahead of print].
[3]
Forner A, Reig M, Varela M, et al. Diagnosis and treatment of hepatocellular carcinoma. update consensus document from the AEEH, SEOM, SERAM, SERVEI and SETH[J]. Med Clin, 2016, 146(11):511.e1-511.e22.
[4]
Roy D, Sheng GY, Herve S, et al. Interplay between cancer cell cycle and metabolism: challenges, targets and therapeutic opportunities[J]. Biomed Pharmacother, 2017, 89:288-296.
[5]
Raaijmakers JA, Tanenbaum ME, Maia AF, et al. RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment[J]. J Cell Sci, 2009, 122(Pt 14):2436-2445.
[6]
Ohta S, Bukowski-Wills JC, Wood L, et al. Proteomics of isolated mitotic chromosomes identifies the kinetochore protein Ska3/Rama1[J]. Cold Spring Harb Symp Quant Biol, 2010(75):433-438.
[7]
Pesson M, Volant A, Uguen A, et al. A gene expression and pre-mRNA splicing signature that marks the adenoma-adenocarcinoma progression in colorectal cancer[J]. PloS One, 2014, 9(2):e87761.
[8]
Jiao X, Hooper SD, Djureinovic T, et al. Gene rearrangements in hormone receptor negative breast cancers revealed by mate pair sequencing[J]. BMC genomics, 2013(14):165.
[9]
Lee M, Williams KA, Hu Y, et al. GNL3 and SKA3 are novel prostate cancer metastasis susceptibility genes[J]. Clin Exp Metastasis, 2015, 32(8):769-782.
[10]
Yadav V, Sultana S, Yadav J, et al. Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53[J]. PloS one, 2012, 7(10):e47796.
[11]
Jeyaprakash AA, Santamaria A, Jayachandran U, et al. Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface[J]. Mol Cell, 2012, 46(3):274-286.
[12]
Helgeson LA, Zelter A, Riffle M, et al. Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore-microtubule attachments[J]. Proc Natl Acad Sci U S A, 2018, 115(11):2740-2745.
[13]
Zhang Q, Sivakumar S, Chen Y, et al. Ska3 phosphorylated by Cdk1 binds Ndc80 and recruits Ska to kinetochores to promote mitotic progression[J]. Curr Biol, 2017, 27(10):1477-1484, e4.
[14]
Regad T. Molecular and cellular pathogenesis of melanoma initiation and progression[J]. Cell Mol Life Sci, 2013, 70(21):4055-4065.
[15]
Fan YC, Zhu YS, Mei PJ, et al. Cullin1 regulates proliferation, migration and invasion of glioma cells[J]. Med Oncol, 2014, 31(10):227.
[16]
Chen J, Li X, Cheng Q, et al. Effects of cyclin D1 gene silencing on cell proliferation, cell cycle, and apoptosis of hepatocellular carcinoma cells[J]. J Cell Biochem, 2018, 119(2):2368-2380.
[17]
El-Deiry WS. p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy[J]. Cancer Res, 2016, 76(18):5189-5191.
[18]
Amin M, Razi M, Sarrafzadeh-Rezaei F, et al. Berberine inhibits experimental varicocele-induced cell cycle arrest via regulating cyclin D1, cdk4 and p21 proteins expression in rat testicles[J]. Andrologia, 2018, DOI: 10.1111/and.12984[Epub ahead of print].
[19]
Hosooka T, Ogawa W. A novel role for the cell cycle regulatory complex cyclin D1-CDK4 in gluconeogenesis [J]. J Diabetes Investig, 2016, 7(1):27-28.
[20]
Ye D, Luo H, Lai Z, et al. ClC-3 chloride channel proteins regulate the cell cycle by up-regulating cyclin D1-CDK4/6 through suppressing p21/p27 expression in nasopharyngeal carcinoma cells[J]. Sci Rep, 2016(6): 30276.
[1] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[2] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[3] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[4] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[5] 张文华, 陶焠, 胡添松. 不同部位外生型肝癌临床病理特点及其对术后肝内复发和预后影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 651-655.
[6] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[7] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[8] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[9] 叶文涛, 吴忠均, 廖锐. 癌旁组织ALOX15表达与肝癌根治性切除术后预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 708-712.
[10] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[11] 杜锡林, 谭凯, 贺小军, 白亮亮, 赵瑶瑶. 肝细胞癌转化治疗方式[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 597-601.
[12] 王峰杰, 王礼光, 廖珊, 刘颖, 符荣党, 陈焕伟. 腹腔镜右半肝切除术治疗肝癌的安全性与疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 517-522.
[13] 张海涛, 贾哲, 马超, 张其坤, 武聚山, 郭庆良, 曾道炳, 栗光明, 王孟龙. 手术切除与射频消融治疗血管周围型单发小肝癌临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 523-527.
[14] 吕瑶, 张婵, 陈建华, 张鸣青. 压力控制容量保证通气模式在腹腔镜肝细胞癌切除术中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 528-533.
[15] 杨秀君, 崔梦莹, 张丹, 曲仙智, 苗云皓, 盛基尧, 郑戈, 刘水, 张学文. 信迪利单抗联合仑伐替尼成功转化治疗不可切除肝癌一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 581-584.
阅读次数
全文


摘要