切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2024, Vol. 13 ›› Issue (05) : 729 -735. doi: 10.3877/cma.j.issn.2095-3232.2024.05.023

基础研究

姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制
王向前1,(), 李清峰1, 陈磊1, 丘文丹1, 姚志成2, 李熠1, 吴荣焕1   
  1. 1. 510813 广州市中西医结合医院消化内科
    2. 510530 广州,中山大学附属第三医院肝胆胰脾外科
  • 收稿日期:2024-05-24 出版日期:2024-10-10
  • 通信作者: 王向前
  • 基金资助:
    广东省自然科学基金(2018A030313641)

Inhibitory effect of curcumin on sorafenib resistance in hepatocellular carcinoma and its regulatory mechanism

Xiangqian Wang1,(), Qingfeng Li1, Lei Chen1, Wendan Qiu1, Zhicheng Yao2, Yi Li1, Ronghuan Wu1   

  1. 1. Department of Gastroenterology, Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou 510813, China
    2. Department of Hepatobiliary Pancreatic and Splenic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510530, China
  • Received:2024-05-24 Published:2024-10-10
  • Corresponding author: Xiangqian Wang
引用本文:

王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.

Xiangqian Wang, Qingfeng Li, Lei Chen, Wendan Qiu, Zhicheng Yao, Yi Li, Ronghuan Wu. Inhibitory effect of curcumin on sorafenib resistance in hepatocellular carcinoma and its regulatory mechanism[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(05): 729-735.

目的

探讨姜黄素抑制肝细胞癌(肝癌)索拉非尼耐药作用及其调控机制。

方法

采用梯度浓度加药法成功获取人索拉非尼耐药肝癌细胞株Hep3B-SR,采用姜黄素20 μg/ml干预Hep3B-SR;长链非编码RNA(LncRNA)表达谱芯片筛选姜黄素干预Hep3B-SR的相关LncRNA;qRT-PCR检测靶标LncRNA和下游相关基因CD44、MYC、JUN、FOS mRNA变化情况;构建敲低和过表达靶标LncRNA细胞株,采用细胞克隆形成实验和细胞成球实验,检测肝癌干性变化情况;CCK-8检测索拉非尼IC50值的变化情况;Western blot检测肝癌细胞干性标志物CD44及Wnt2、β-catenin、c-Myc蛋白及通路变化情况。两组细胞mRNA和蛋白表达比较采用t检验,多组肝癌细胞增殖和IC50值比较采用单因素方差分析和LSD-t检验。

结果

CCK8法检测显示,索拉非尼耐药株Hep3B-SR的平均IC50值为(8.4±1.1)μmol,明显高于Hep3B细胞的(4.0±1.1)μmol(LSD-t=16.27,P<0.001)和姜黄素(20 μg/ml)干预后Hep3B-SR+Curcumin细胞的(6.1±1.1)μmol(LSD-t=3.97,P<0.001)。LncRNA表达谱芯片及qRT-PCR检测显示姜黄素可有效上调耐药肝癌细胞中LncCCDC152的表达,通过过表达LncCCDC152后可显著下调Hep3B肝癌细胞的成球和克隆形成能力;LncCCDC152可结合转录延伸因子1(TCERG1),进而影响肝癌细胞中Wnt/β-catenin通路基因的转录活性和蛋白表达。

结论

姜黄素可抑制肝癌索拉非尼耐药,可能通过上调肝癌细胞中LncCCDC152结合TCERG1蛋白靶向抑制Wnt/β-catenin通路,从而减少肝癌干性活性并抑制索拉非尼耐药。

Objective

To evaluate the inhibitory effect of curcumin on sorafenib resistance in hepatocellular carcinoma (HCC) and unravel its regulatory mechanism.

Methods

Human sorafenib-resistant Hep3B-SR cell lines were successfully obtained by gradient concentration dosing method, and intervened by curcumin at a dose of 20 μg/ml. Long-chain non-coding RNA (LncRNA) expression microarray was used to screen the LncRNAs related to curcumin-intervened Hep3B-SR. qRT-PCR was employed to detect the changes of target LncRNA and the downstream related genes of CD44, MYC, JUN and FOS mRNA. The cell lines with knockdown and overexpression of target LncRNA were constructed. Cell colony and sphere formation assays were utilized to detect the stem-like changes of HCC. CCK-8 assay was adopted to detect the changes of IC50 value of sorafenib. Western blot was performed to detect the changes of CD44, Wnt2, β-catenin, c-Myc proteins and the signaling pathway. The expression levels of mRNAs and proteins between two groups were compared by t test. The proliferation rate and IC50 value of HCC cells among multiple groups were compared by one-way ANOVA and LSD-t test.

Results

CCK8 assay showed that the average IC50 value of sorafenib-resistant Hep3B-SR cell line was (8.4±1.1) μmol, significantly higher than (4.0±1.1) μmol of Hep3B cells (LSD-t=16.27, P<0.001) and (6.1±1.1) μmol of Hep3B-SR cells after curcumin (20 μg/ml) intervention (LSD-t=3.97, P<0.001). LncRNA expression microarray and qRT-PCR showed that curcumin could effectively up-regulate the expression of LncCCDC152 in drug-resistant HCC cells. Overexpression of LncCCDC152 could significantly down-regulate the sphere and colony formation ability of Hep3B HCC cells. LncCCDC152 could bind with transcriptional elongation regulator 1 (TCERG1), thus affecting the transcriptional activity and protein expression of the genes in the Wnt/β-catenin signaling pathway in cells.

Conclusions

Curcumin can suppress the sorafenib resistance of HCC, which targetedly inhibits the Wnt/β-catenin pathway probably by up-regulating the binding of LncCCDC152 with TCERG1 protein in HCC cells, thereby reducing stem-like activity of HCC and inhibiting sorafenib resistance.

图1 CCK-8法检测肝癌细胞活性注:Hep3B为肝癌细胞株,Hep3B-SR为索拉非尼耐药的肝癌细胞株,Hep3B-SR+Curcumin为姜黄素干预后索拉非尼耐药肝癌细胞株
图2 姜黄素通过调控LncCCDC152抑制Hep3B索拉非尼耐药注:a为qRT-PCR检测筛选LncCCDC152,b为TCGA数据库中LncCCDC152转录本的表达情况,c为LncCCDC152转录本对肝癌患者总体生存率(OS)的影响;LIHC为肝癌
图3 LncCCDC152抑制肝癌细胞克隆形成和成球能力注:上边一组为细胞克隆形成实验,下边一组为细胞成球实验;NC为对照组,SH为敲低组,OE为过表达组,Curcumin为姜黄素
图4 LncCCDC152抑制下游Wnt/β-catenin信号通路注:a为Western blot检测,b为RT-PCR实验;NC为对照组,SH为敲低组,OE为过表达组,*为P<0.05,**为P<0.01
图5 LncCCDC152通过结合TCERG1抑制下游Wnt/β-catenin通路的表达和活化注:a为RNA沉降实验,Western blot检测示LncCCDC152可结合TCERG1蛋白;b为Western blot检测示外源性加入姜黄素可下调耐药细胞株中TCERG1蛋白的表达;c为示过表达TCERG1则可消减过表达LncCCDC152介导的抑制成球能力(上层)和克隆形成能力(下层);NC为对照组,SH为敲低组,OE为过表达组;Hep3B为肝癌细胞株,Hep3B-SR为索拉非尼耐药肝癌细胞株,Hep3B-SR+ Curcumin为姜黄素干预后索拉非尼耐药肝癌细胞株;Curcumin为姜黄素,TECRG1为转录延伸因子1,GAPDH为甘油醛-3-磷酸脱氢酶
[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015[J]. CA Cancer J Clin, 2015, 65(1):5-29.
[2]
中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2022年版)[J/OL]. 肿瘤综合治疗电子杂志, 2022, 8(2):16-53.
[3]
Chen S, Cao Q, Wen W, et al. Targeted therapy for hepatocellular carcinoma: challenges and opportunities[J]. Cancer Lett, 2019, 460:1-9.
[4]
Kotha RR, Luthria DL. Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects[J]. Molecules, 2019, 24(16):2930.
[5]
Marquardt JU, Gomez-Quiroz L, Arreguin Camacho LO, et al. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer[J]. J Hepatol, 2015, 63(3):661-669.
[6]
Zhou C, Hu C, Wang B, et al. Curcumin suppresses cell proliferation, migration, and invasion through modulating miR-21-5p/SOX6 axis in hepatocellular carcinoma[J]. Cancer Biother Radiopharm, 2020,DOI:10.1089/cbr.2020.3734[Epub ahead of print].
[7]
Man S, Yao J, Lv P, et al. Curcumin-enhanced antitumor effects of sorafenib via regulating the metabolism and tumor microenvironment[J]. Food Funct, 2020, 11(7):6422-6432.
[8]
Rumgay H, Arnold M, Ferlay J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040[J]. J Hepatol, 2022, 77(6):1598-1606.
[9]
Zhu YJ, Zheng B, Wang HY, et al. New knowledge of the mechanisms of sorafenib resistance in liver cancer[J]. Acta Pharmacol Sin, 2017, 38(5):614-622.
[10]
Blivet-van Eggelpoël MJ, Chettouh H, Fartoux L, et al. Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells[J]. J Hepatol, 2012, 57(1):108-115.
[11]
Liu Z, Lin Y, Zhang J, et al. Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2019, 38(1):447.
[12]
Ma XL, Hu B, Tang WG, et al. CD73 sustained cancer-stem-cell traits by promoting SOX9 expression and stability in hepatocellular carcinoma[J]. J Hematol Oncol, 2020, 13(1):11.
[13]
Machado IF, Miranda RG, Dorta DJ, et al. Targeting oxidative stress with polyphenols to fight liver diseases[J]. Antioxidants, 2023, 12(6):1212.
[14]
Wang Z, Li Z, Ye Y, et al. Oxidative stress and liver cancer: etiology and therapeutic targets[J]. Oxid Med Cell Longev, 2016: 7891574.
[15]
Tian N, Shangguan W, Zhou Z, et al. Lin28b is involved in curcumin-reversed paclitaxel chemoresistance and associated with poor prognosis in hepatocellular carcinoma[J]. J Cancer, 2019, 10(24):6074-6087.
[16]
Bortel N, Armeanu-Ebinger S, Schmid E, et al. Effects of curcumin in pediatric epithelial liver tumors: inhibition of tumor growth and alpha-fetoprotein in vitro and in vivo involving the NFkappaB- and the beta-catenin pathways[J]. Oncotarget, 2015, 6(38):40680-40691.
[17]
Wang M, Yu F, Chen X, et al. The underlying mechanisms of noncoding RNAs in the chemoresistance of hepatocellular carcinoma[J]. Mol Ther Nucleic Acids, 2020, 21:13-27.
[18]
Zhou M, Zhang G, Hu J, et al. Rutin attenuates sorafenib-induced chemoresistance and autophagy in hepatocellular carcinoma by regulating BANCR/miRNA-590-5P/OLR1 axis[J]. Int J Biol Sci, 2021, 17(13):3595-3607.
[19]
Shu G, Su H, Wang Z, et al. LINC00680 enhances hepatocellular carcinoma stemness behavior and chemoresistance by sponging miR-568 to upregulate AKT3[J]. J Exp Clin Cancer Res, 2021, 40(1):45.
[20]
Liu S, Bu X, Kan A, et al. SP1-induced lncRNA DUBR promotes stemness and oxaliplatin resistance of hepatocellular carcinoma via E2F1-CIP2A feedback[J]. Cancer Lett, 2022, 528:16-30.
[1] 何甘霖, 陈香侬, 李萍, 甄佳怡, 李京霞, 邹外一, 许多荣. 白血病异基因造血干细胞移植术后股骨坏死的影响因素[J]. 中华关节外科杂志(电子版), 2024, 18(04): 450-456.
[2] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[3] 丁丁, 杨云川, 马翔, 马中正, 霍俊一, 周磊. 术前C-反应蛋白-白蛋白-淋巴细胞比值在肝细胞癌预后中的价值评估[J]. 中华普通外科学文献(电子版), 2024, 18(04): 261-265.
[4] 汤宏涛, 何坤. 中晚期肝细胞癌介入治疗的进展及前景[J]. 中华普通外科学文献(电子版), 2024, 18(04): 305-308.
[5] 陆朝阳, 金也, 孙备. 腹腔镜解剖性肝切除的发展[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 363-366.
[6] 陈丽璇, 窦培宁, 肖扬. 干细胞治疗早发性卵巢功能不全的现状及未来展望[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 239-248.
[7] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[8] 杜鑫, 刘霞霞, 张恬波, 张夏林, 杨林花, 张睿娟. AHNAK基因高表达与老年急性髓系白血病患者预后不良相关[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 204-211.
[9] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[10] 王向丽, 吴涛, 毛东锋, 刘恒, 刘文慧, 周芮, 田红娟. 异基因造血干细胞移植治疗ANKRD26相关性血小板减少症1例并文献复习[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 236-238.
[11] 邓万玉, 陈富, 许磊波. 肝硬化与非肝硬化乙肝相关性肝癌患者术后无复发生存比较及其影响因素分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 670-674.
[12] 中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 407-449.
[13] 龚财芳, 赵俊宇, 游川. 围手术期肠内营养在肝癌肝切除患者中有效性及安全性的Meta分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 551-556.
[14] 张杰, 田广磊, 陈雄. 基于生物信息学分析探讨肝癌BRD4与预后关系及其ceRNA调控网络构建[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 568-576.
[15] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
阅读次数
全文


摘要