切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2022, Vol. 11 ›› Issue (04) : 380 -385. doi: 10.3877/cma.j.issn.2095-3232.2022.04.011

临床研究

基于线粒体自噬相关基因构建肝细胞癌患者预后风险模型
王瑶1, 王震2, 钱叶本1,()   
  1. 1. 230031 合肥,安徽医科大学第一附属医院肝胆外科
    2. 231200 安徽省肥西县人民医院普通外科
  • 收稿日期:2022-04-24 出版日期:2022-08-10
  • 通信作者: 钱叶本
  • 基金资助:
    安徽省自然科学基金(1508085MH173)

Establishment of prognostic risk model based on mitophagy-related genes for hepatocellular carcinoma patients

Yao Wang1, Zhen Wang2, Yeben Qian1,()   

  1. 1. Department of Hepatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230031, China
    2. Department of General Surgery, Anhui Feixi Province People's Hospital, Heifei 231200, China
  • Received:2022-04-24 Published:2022-08-10
  • Corresponding author: Yeben Qian
引用本文:

王瑶, 王震, 钱叶本. 基于线粒体自噬相关基因构建肝细胞癌患者预后风险模型[J/OL]. 中华肝脏外科手术学电子杂志, 2022, 11(04): 380-385.

Yao Wang, Zhen Wang, Yeben Qian. Establishment of prognostic risk model based on mitophagy-related genes for hepatocellular carcinoma patients[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2022, 11(04): 380-385.

目的

基于TCGA和ICGC数据库的线粒体自噬相关基因(MRGs)构建肝细胞癌(肝癌)患者预后风险模型,并筛选具有治疗潜力的小分子药物。

方法

从TCGA和ICGC数据库中下载肝癌患者的RNA测序数据和临床信息。从Reactome信号通路数据库检索收集MRGs。采用单因素Cox回归和Lasso回归分析以TCGA队列为训练集构建预后风险模型,并在ICGC队列中进行验证。R软件"rms"包用于构建列线图。R软件"limma"包用于选择预后风险模型中高风险组和低风险组的差异基因,利用获得的差异基因在联系图(CMap)数据库中筛选具有治疗潜力的小分子药物。

结果

19个MRGs在TCGA和ICGC队列肿瘤组织中均表达上调,PINK表达下调。12个MRGs在两个队列中均为生存预后的危险因素。利用Lasso回归分析构建5-MRGs标志物的预后风险模型,包括酪蛋白激酶2β多肽(CSNK2B)、线粒体融合蛋白1(MFN1)、磷酸甘油酸突变酶家族成员5(PGAM5)、外线粒体膜转位酶同源物(TOMM)5、TOMM22基因。Kaplan-Meier生存分析显示,训练集和验证集中高风险组的预后较差,中位生存期较短。ROC曲线提示该模型对肝癌患者预后有较高的预测价值。多因素Cox分析提示线粒体自噬评分是影响肝癌患者预后的独立因素(HR=2.68,95%CI:1.65~4.36,P<0.001)。在TCGA队列中结合肿瘤分期、分级、T分期与线粒体自噬评分构建了列线图预测患者的生存率。从CMap数据库中筛选出4个有潜力可逆转高风险组预后较差的特征小分子药物,分别为DL-thiorphan、blebbistatin、talampicillin和puromycin。

结论

本研究基于MRGs构建了一个稳定的预后风险模型和列线图,并通过不同风险组的差异基因筛选出可能具有治疗作用的小分子药物。

Objective

To establish a prognostic risk model for hepatocellular carcinoma (HCC) patients based on mitophagy-related genes (MRGs) from TCGA and ICGC databases, and to screen small molecule drugs with therapeutic potential.

Methods

RNA sequencing data and clinical information of HCC patients were downloaded from TCGA and ICGC databases. MRGs were retrieved and collected from Reactome signaling pathway database. Univariate Cox regression and Lasso regression analyses were employed to establish the prognostic risk model using TCGA cohort as the training data set and ICGC cohort as the verification set. The nomogram was plotted with R software "rms" package. The differential genes between the high-risk and low-risk groups in the prognostic risk model were selected with R software "limma" package. Small molecule drugs with therapeutic potential were screened out from the CMap database using the differential genes.

Results

The expression levels of 19 MRGs were up-regulated, whereas that of PINK was down-regulated in the tumor tissues of TCGA and ICGC cohorts. All 12 MRGs were the risk factors for the clinical prognosis in two cohorts. A prognostic risk model of 5-MRGs markers was established by Lasso regression analysis, including casein kinase 2β polypeptide (CSNK2B), mitofusin 1 (MFN1), phosphoglycerate mutase family member 5 (PGAM5), translocase of outer mitochondrial membrane (TOMM) 5 and TOMM22 genes. Kaplan-Meier survival analysis demonstrated that prognosis in the high-risk groups in training and verification sets was poorer, and the median survival was shorter. ROC curve indicated this model yielded high predictive value for the prognosis of HCC patients. Multivariate Cox analysis demonstrated that mitophagy score was an independent factor affecting the prognosis of HCC patients (HR=2.68, 95%CI: 1.65-4.36, P<0.001). In the TCGA cohort, a nomogram was plotted combining tumor staging, grading, T staging and mitophagy score to predict the survival of HCC patients. 4 small molecular drugs with the potential to reverse the poor prognosis of patients in high-risk groups were screened out from the CMap database, including DL-thiorphan, blebbistatin, talampicillin and puromycin.

Conclusions

In this study, a stable prognostic risk model and nomogram are constructed based on MRGs, and small molecular drugs that might have therapeutic potential are screened out by differential genes in different risk groups.

图1 TCGA-LIHC数据库中正常肝组织与肿瘤组织中MRGs表达水平差异注:a为小提琴图,b为基因热图;**P<0.01,***P<0.001;ATG为自噬相关蛋白,CSNK2A1为酪蛋白激酶2α1多肽,CSNK2A2为酪蛋白激酶2α2多肽,CSNK2B为酪蛋白激酶2β多肽,FUNDC1为FUN14结构域蛋白1,MAP1LC3A为微管相关蛋白1轻链3α,MAP1LC3B为微管相关蛋白1轻链3 β,MFN为线粒体融合蛋白,PGAM5为磷酸甘油酸突变酶家族成员5,PINK1为PTEN诱导的假定蛋白激酶1,RPS27A为核糖体蛋白S27a,SQSTM1为自噬受体P62,SRC为肉瘤病毒基因,TOMM为外线粒体膜转位酶同源物,UBA52为泛素-52氨基酸融合蛋白,UBB为泛素蛋白B,UBC为泛素蛋白C,ULK1为Unc-51样自噬激活激酶1,VDAC1为电压依赖性阴离子通道蛋白1,LIHC为肝细胞癌,MRGs为线粒体自噬相关基因
图2 TCGA-LIHC队列中筛选预后相关MRGs单因素Cox回归分析森林图注:ATG为自噬相关蛋白,CSNK2A1为酪蛋白激酶2α1多肽,CSNK2A2为酪蛋白激酶2α2多肽,CSNK2B为酪蛋白激酶2β多肽,FUNDC1为FUN14结构域蛋白1,MAP1LC3A为微管相关蛋白1轻链3α,MAP1LC3B为微管相关蛋白1轻链3β,MFN为线粒体融合蛋白,PGAM5为磷酸甘油酸突变酶家族成员5,PINK1为PTEN诱导的假定蛋白激酶1,RPS27A为核糖体蛋白S27a,SQSTM1为自噬受体P62,SRC为肉瘤病毒基因,TOMM为外线粒体膜转位酶同源物,UBA52为泛素-52氨基酸融合蛋白,UBB为泛素蛋白B,UBC为泛素蛋白C,ULK1为Unc-51样自噬激活激酶1,VDAC1为电压依赖性阴离子通道蛋白1,LIHC为肝细胞癌,MRGs为线粒体自噬相关基因
图3 基于TCGA-LIHC中MRGs构建肝癌患者预后风险模型注:a为由Lasso回归分析获得风险模型,b为Kaplan-Meier生存曲线,c为该模型1、3、5年ROC曲线,其中1、3、5年ROC曲线下面积分别为0.78、0.68、0.68;MRGs为自噬相关基因,LIHC为肝细胞癌
图4 基于MRGs的肝癌预后预测列线图注:MRGs为线粒体自噬相关基因
表1 基于MRGs高低风险组差异基因和CMap数据库筛选的小分子药物
[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[2]
Ma K, Chen G, Li W, et al. Mitophagy, mitochondrial homeostasis, and cell fate[J]. Front Cell Dev Biol, 2020(8):467.
[3]
Killackey SA, Philpott DJ, Girardin SE. Mitophagy pathways in health and disease[J]. J Cell Biol, 2020, 219(11):e202004029.
[4]
Ferro F, Servais S, Besson P, et al. Autophagy and mitophagy in cancer metabolic remodelling[J]. Semin Cell Dev Biol, 2020(98): 129-138.
[5]
Vernucci E, Tomino C, Molinari F, et al. Mitophagy and oxidative stress in cancer and aging: focus on sirtuins and nanomaterials[J]. Oxid Med Cell Longev, 2019:6387357.
[6]
Panigrahi DP, Praharaj PP, Bhol CS, et al. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics[J]. Semin Cell Dev Biol, 2020(66):45-58.
[7]
Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge[J]. Contemp Oncol, 2015, 19(1A):A68-77.
[8]
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes[J]. Nature, 2020, 578(7793): 82-93.
[9]
Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase[J]. Nucleic Acids Res, 2020, 48(D1):D498-503.
[10]
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7):e47.
[11]
Alhamzawi R, Ali HTM. The Bayesian adaptive lasso regression[J]. Math Biosci, 2018(303):75-82.
[12]
Stevens NT, Lu L. Comparing Kaplan-Meier curves with the probability of agreement[J]. Stat Med, 2020, 39(30):4621-4635.
[13]
Kamarudin AN, Cox T, Kolamunnage-Dona R. Time-dependent ROC curve analysis in medical research: current methods and applications[J]. BMC Med Res Methodol, 2017, 17(1):53.
[14]
Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease[J]. Science, 2006, 313(5795):1929-1935.
[15]
Yu S, Hu Q, Fan K, et al. CSNK2B contributes to colorectal cancer cell proliferation by activating the mTOR signaling[J]. J Cell Commun Signal, 2021, 15(3):383-392.
[16]
Zhang Z, Li TE, Chen M, et al. MFN1-dependent alteration of mitochondrial dynamics drives hepatocellular carcinoma metastasis by glucose metabolic reprogramming[J]. Br J Cancer, 2020, 122(2): 209-220.
[17]
Cheng J, Qian D, Ding X, et al. High PGAM5 expression induces chemoresistance by enhancing Bcl-xL-mediated anti-apoptotic signaling and predicts poor prognosis in hepatocellular carcinoma patients[J]. Cell Death Dis, 2018, 9(10):991.
[18]
Heinemeyer T, Stemmet M, Bardien S, et al. Underappreciated roles of the translocase of the outer and inner mitochondrial membrane protein complexes in human disease[J]. DNA Cell Biol, 2019, 38(1): 23-40.
[19]
Johnson JM, Lai SY, Cotzia P, et al. Mitochondrial metabolism asa treatment target in anaplastic thyroid cancer[J]. Semin Oncol, 2015, 42(6):915-922.
[20]
Curry JM, Tuluc M, Whitaker-Menezes D, et al. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer[J]. Cell Cycle, 2013, 12(9):1371-1384.
[1] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[2] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[3] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[4] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[5] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[6] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[7] 李一帆, 朱帝文, 任伟新, 鲍应军, 顾俊鹏, 张海潇, 曹耿飞, 阿斯哈尔·哈斯木, 纪卫政. 血GP73水平在原发性肝癌TACE疗效评价中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 825-830.
[8] 刘敏思, 李荣, 李媚. 基于GGT与Plt比值的模型在HBV相关肝细胞癌诊断中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 831-835.
[9] 关小玲, 周文营, 陈洪平. PTAAR在乙肝相关慢加急性肝衰竭患者短期预后中的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 841-845.
[10] 焦振东, 惠鹏, 金上博. 三维可视化结合ICG显像技术在腹腔镜肝切除术治疗复发性肝癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 859-864.
[11] 张润锦, 阳盼, 林燕斯, 刘尊龙, 刘建平, 金小岩. EB病毒相关胆管癌伴多发转移一例及国内文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 865-869.
[12] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[13] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[14] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[15] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?