切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2023, Vol. 12 ›› Issue (01) : 61 -67. doi: 10.3877/cma.j.issn.2095-3232.2023.01.012

所属专题: 临床研究

临床研究

基于SEER数据库构建早期肝内胆管细胞癌预后Nomogram模型
王建磊1, 马德林1, 靳斌1,()   
  1. 1. 250000 济南,山东大学齐鲁医院器官移植科
  • 收稿日期:2022-10-19 出版日期:2023-02-10
  • 通信作者: 靳斌
  • 基金资助:
    国家卫生健康委课题合作项目(GWJJ2021100302)

Establishment of Nomogram prognostic model for early intrahepatic cholangiocarcinoma based on SEER database

Jianlei Wang1, Delin Ma1, Bin Jin1,()   

  1. 1. Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan 250000, China
  • Received:2022-10-19 Published:2023-02-10
  • Corresponding author: Bin Jin
引用本文:

王建磊, 马德林, 靳斌. 基于SEER数据库构建早期肝内胆管细胞癌预后Nomogram模型[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 61-67.

Jianlei Wang, Delin Ma, Bin Jin. Establishment of Nomogram prognostic model for early intrahepatic cholangiocarcinoma based on SEER database[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(01): 61-67.

目的

建立早期肝内胆管细胞癌(ICC)患者癌症特异性生存(CSS)的Nomogram预后预测模型,并验证其预测效能。

方法

本研究从美国国立癌症研究所监测、流行病学及结局项目数据库(SEER)中筛选出943例早期ICC患者资料。按照7∶3比例随机分为训练组(663例)和验证组(280例)。训练组采用单因素及多因素Cox分析筛选独立危险因素,并建立基于独立危险因素的预后Nomogram模型。通过一致性指数(C-index)、ROC曲线、校准曲线验证Nomogram模型的准确性。采用决策分析曲线(DCA)来评价Nomogram模型的临床实用性,并与美国癌症联合委员会(AJCC)分期进行比较。根据Nomogram模型计算的总分对患者进行风险分层,Kaplan-Meier生存曲线分析模型的分层效果。

结果

Cox回归分析显示,年龄、性别、婚姻状态、肿瘤直径、组织学分级、手术及放疗是早期ICC患者CSS的独立影响因素(HR=1.364,1.237,0.555,1.269,1.350,0.244,0.587;P<0.05)。基于危险因素构建患者CSS的Nomogram预测模型,训练组C-index为0.724,验证组为0.676;训练组及验证组1、3、5年ROC曲线的曲线下面积(AUC)均大于0.7。校准曲线分析显示,Nomogram预测结果具有良好的一致性。DCA分析显示,Nomogram模型具有良好的临床应用前景。与AJCC分期相比,该模型准确度和临床应用价值较高。建立风险分层系统,患者分为高、中、低危险组。Kaplan-Meier生存曲线分析显示,患者低、中、高危组的1年CSS率分别为88.4%、65.5%和35.5%,3年CSS率分别为63.4%、32.0%和7.6%,5年CSS率分别为48.2%、20.4%和4.5%,3组间CSS率差异有统计学意义(χ2=332.27,P<0.05)。

结论

基于SEER数据库成功构建早期ICC预后Nomogram模型,该模型较传统AJCC分期有更好的预测效能,且可对患者生存风险进行分层分析。

Objective

To establish a Nomogram prognostic model for the cancer-specific survival (CSS) of patients with early intrahepatic cholangiocarcinoma (ICC) and to validate the predictive efficacy.

Methods

Clinical data of 943 patients with early ICC were retrieved from the Surveillance, Epidemiology, and End Results (SEER) database of American National Cancer Institute (NCI). According to the ratio of 7∶3, they were randomly divided into the training (n=663) and validation groups (n=280). In the training group, the independent risk factors were screened by univariate and multivariate Cox's regression analyses, anda Nomogram prognostic model was established based on these independent risk factors. The accuracy of this model was validated by C-index, receiver operating characteristic (ROC) curve and calibration curve. The clinical utility of the Nomogram model was assessed by decision curve analysis (DCA) and compared with the American Joint Committee on Cancer (AJCC) staging. According to the total score calculated by Nomogram model, all patients were subjected to the risk stratification. The effect of risk stratification was evaluated by Kaplan-Meier survival curve.

Results

Cox's regression analysis showed that age, sex, marital status, tumor diameter, histological grading, surgery and radiotherapy were the independent influencing factors for the CSS of patients with early ICC (HR=1.364, 1.237, 0.555, 1.269, 1.350, 0.244, 0.587; P<0.05). Based on these independent risk factors, the Nomogram prediction model of CSS patients was established. In the training group, the C-index was 0.724, and 0.676 in the validation group. The area under the ROC curve (AUC) at 1, 3 and 5 years exceeded 0.7 in two groups. The calibration curve analysis demonstrated that the predictive results of Nomogram model were in good agreement. DCA analysis revealed that Nomogram model had high clinical utility. Compared with the AJCC staging, this model yielded higher accuracy and clinical application value. A risk stratified system was established, and all patients were divided into the high, middle and low risk groups. Kaplan-Meier survival curve showed that the 1-year CSS in the low, middle and high risk groups were 88.4%, 65.5% and 35.5%, 63.4%, 32.0% and 7.6% for the 3-year CSS, and 48.2%, 20.4% and 4.5% for the 5-year CSS, respectively. Significant differences were observed in the CSS among three groups (χ2=332.27, P<0.05).

Conclusions

Based on the SEER database, the Nomogram prognostic model for early ICC has been successfully established. Compared with conventional AJCC staging, this model yields higher predictive efficiency, which can also deliver stratified analysis of survival risk.

表1 训练组早期ICC患者CSS的单因素及多因素Cox回归分析
图1 早期ICC患者CSS预后Nomogram列线图 注:ICC为肝内胆管细胞癌,CSS为癌症特异性生存
图2 早期ICC患者CSS的Nomogram模型ROC曲线 注:ICC为肝内胆管细胞癌,CSS为癌症特异性生存,AUC为曲线下面积
图3 早期ICC患者CSS的Nomogram模型校准曲线 注:ICC为肝内胆管细胞癌,CSS为癌症特异性生存
图4 早期ICC患者CSS的Nomogram模型DCA 注:ICC为肝内胆管细胞癌,CSS为癌症特异性生存,DCA为决策分析曲线,AJCC为美国癌症联合委员会
图5 早期ICC患者CSS风险分级Kaplan-Meier曲线 注:a、b、c分别为总体、训练组、验证组CSS风险分级Kaplan-Meier曲线;ICC为肝内胆管细胞癌,CSS为癌症特异性生存
[1]
Du J, Lan T, Liao H, et al. CircNFIB inhibits tumor growth and metastasis through suppressing MEK1/ERK signaling in intrahepatic cholangiocarcinoma[J]. Mol Cancer, 2022, 21(1):18.
[2]
Depciuch J, Parlinska-Wojtan M, Rahmi Serin K, et al. Differential of cholangiocarcinoma disease using Raman spectroscopy combined with multivariate analysis[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2022(272):121006.
[3]
Rhee H, Choi SH, Park JH, et al. Preoperative magnetic resonance imaging-based prognostic model for mass-forming intrahepatic cholangiocarcinoma[J]. Liver Int, 2022, 42(4):930-941.
[4]
Kim Y, Moris DP, Zhang XF, et al. Evaluation of the 8th edition American Joint Commission on Cancer (AJCC) staging system for patients with intrahepatic cholangiocarcinoma: a surveillance, epidemiology, and end results (SEER) analysis[J]. J Surg Oncol, 2017, 116(6):643-650.
[5]
Spolverato G, Bagante F, Weiss M, et al. Comparative performances of the 7th and the 8th editions of the American Joint Committee on Cancer staging systems for intrahepatic cholangiocarcinoma[J]. J Surg Oncol, 2017, 115(6):696-703.
[6]
Brown ZJ, Hewitt DB, Pawlik TM. Biomarkers of intrahepatic cholangiocarcinoma: diagnosis and response to therapy[J]. Front Biosci, 2022, 27(3):85.
[7]
Brustia R, Langella S, Kawai T, et al. Preoperative risk score for prediction of long-term outcomes after hepatectomy for intrahepatic cholangiocarcinoma: report of a collaborative, international-based, external validation study[J]. Eur J Surg Oncol, 2020, 46(4 Pt A):560-571.
[8]
Park HJ, Park B, Park SY, et al. Preoperative prediction of postsurgical outcomes in mass-forming intrahepatic cholangiocarcinoma based on clinical, radiologic, and radiomics features[J]. Eur Radiol, 2021, 31(11):8638-8648.
[9]
Liu H, Lin L, Lin Z, et al. Impact of surgical margin width on long-term outcomes for intrahepatic cholangiocarcinoma: a multicenter study[J]. BMC Cancer, 2021, 21(1):840.
[10]
Zhang XF, Xue F, He J, et al. Proposed modification of the eighth edition of the AJCC staging system for intrahepatic cholangiocarcinoma[J]. HPB, 2021, 23(9):1456-1466.
[11]
Sasaki K, Margonis GA, Andreatos N, et al. Serum tumor markers enhance the predictive power of the AJCC and LCSGJ staging systems in resectable intrahepatic cholangiocarcinoma[J]. HPB, 2018, 20(10):956-965.
[12]
Kang SH, Hwang S, Lee YJ, et al. Prognostic comparison of the 7th and 8th editions of the American Joint Committee on Cancer staging system for intrahepatic cholangiocarcinoma[J]. J Hepatobiliary Pancreat Sci, 2018, 25(4):240-248.
[13]
Cheng Z, Lei Z, Si A, et al. Modifications of the AJCC 8th edition staging system for intrahepatic cholangiocarcinoma and proposal for a new staging system by incorporating serum tumor markers[J]. HPB, 2019, 21(12):1656-1666.
[14]
陈骏, 毛谅, 何健, 等. 第8版《美国癌症联合会肿瘤分期手册》肝内胆管细胞癌TNM分期解读[J]. 中华消化外科杂志, 2017, 16(4):330-335.
[15]
Lee AJ, Chun YS. Intrahepatic cholangiocarcinoma: the AJCC/UICC 8th edition updates[J]. Chin Clin Oncol, 2018, 7(5):52.
[16]
Saglam K, Bag YM, Bilen Z, et al. Results of intrahepatic cholangiocarcinoma resections: a single-center analysis[J]. J Gastrointest Cancer, 2022, DOI:10.1007/s12029-021-00781-0[Epub ahead of print].
[17]
Weber M, Lam M, Chiesa C, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds[J]. Eur J Nucl Med Mol Imaging, 2022, 49(5):1682-1699.
[18]
Willowson KP, Eslick EM, Bailey DL. Individualised dosimetry and safety of SIRT for intrahepatic cholangiocarcinoma[J]. EJNMMI Phys, 2021, 8(1):65.
[19]
Hong TS, Wo JY, Yeap BY, et al. Multi-institutional phaseⅡstudy of high-dose hypofractionated proton beam therapy in patients with localized, unresectable hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. J Clin Oncol, 2016, 34(5):460-468.
[20]
Smart AC, Goyal L, Horick N, et al. Hypofractionated radiation therapy for unresectable/locally recurrent intrahepatic cholangiocarcinoma[J]. Ann Surg Oncol, 2020, 27(4):1122-1129.
[21]
Li S, Deng M, Wang Q, et al. Transarterial infusion chemotherapy with FOLFOX could be an effective and safe treatment for unresectable intrahepatic cholangiocarcinoma[J]. J Oncol, 2022: 2724476.
[22]
Peng Z, Cao G, Hou Q, et al. The comprehensive analysis of efficacy and safety of CalliSpheres® drug-eluting beads transarterial chemoembolization in 367 liver cancer patients: a multiple-center, cohort study[J]. Oncol Res, 2020, 28(3):249-271.
[1] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[2] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[3] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[4] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[5] 冯旺, 马振中, 汤林花. CT扫描三维重建在肝内胆管细胞癌腹腔镜肝切除术中的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 104-107.
[6] 关小玲, 周文营, 陈洪平. PTAAR在乙肝相关慢加急性肝衰竭患者短期预后中的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 841-845.
[7] 陆镜明, 韩大为, 任耀星, 黄天笑, 向俊西, 张谞丰, 吕毅, 王傅民. 基于术前影像组学的肝内胆管细胞癌淋巴结转移预测的系统性分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 852-858.
[8] 张润锦, 阳盼, 林燕斯, 刘尊龙, 刘建平, 金小岩. EB病毒相关胆管癌伴多发转移一例及国内文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 865-869.
[9] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[10] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[11] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[12] 刘郁, 段绍斌, 丁志翔, 史志涛. miR-34a-5p 在结肠癌患者的表达及其与临床特征及预后的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 485-490.
[13] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[14] 曾明芬, 王艳. 急性胰腺炎合并脂肪肝患者CT 与彩色多普勒超声诊断参数与其病情和预后的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 531-535.
[15] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
阅读次数
全文


摘要