切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2023, Vol. 12 ›› Issue (04) : 434 -439. doi: 10.3877/cma.j.issn.2095-3232.2023.04.014

所属专题: 临床研究

临床研究

基于三维可视化技术的脾门区脾动脉三维分型
高旭东, 王小明(), 陈江明, 奚士航, 潘璇   
  1. 241000 安徽省芜湖市,皖南医学院附属弋矶山医院肝胆外科
    230000 合肥,安徽医科大学第一附属医院肝胆外科
  • 收稿日期:2023-02-23 出版日期:2023-08-10
  • 通信作者: 王小明
  • 基金资助:
    安徽省高校学科(专业)拔尖人才学术资助项目(gxbjZD17); 皖南医学院弋矶山医院科技创新团队"攀峰"培育计划资助项目(KPF2019011); 皖南医学院弋矶山医院科研能力"高峰"塔尖培育计划项目(KGF2019T03); 芜湖市重点研发项目(2022yf68)

Three-dimensional classification of splenic artery in splenic hilum based on 3D visualization

Xudong Gao, Xiaoming Wang(), Jiangming Chen, Shihang Xi, Xuan Pan   

  1. Department of Hepatobiliary Surgery, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu 241000, China
    Department of Hepatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
  • Received:2023-02-23 Published:2023-08-10
  • Corresponding author: Xiaoming Wang
引用本文:

高旭东, 王小明, 陈江明, 奚士航, 潘璇. 基于三维可视化技术的脾门区脾动脉三维分型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 434-439.

Xudong Gao, Xiaoming Wang, Jiangming Chen, Shihang Xi, Xuan Pan. Three-dimensional classification of splenic artery in splenic hilum based on 3D visualization[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(04): 434-439.

目的

探讨基于三维可视化技术(3DVT)的脾门区脾动脉(SA)三维分型。

方法

本研究对象为2018年6月至2021年6月在安徽医科大学第一附属医院及皖南医学院附属弋矶山医院诊治的100例患者CT检查影像学资料。患者均签署知情同意书,符合医学伦理学规定。其中男61例,女39例;年龄49~88岁,中位年龄63岁。所有患者行薄层增强CT扫描,提取数据导入三维可视化系统进行三维重建。观察SA分支数目、分布范围、立体走行,与胰尾末端及脾门的空间位置关系,进行三维可视化分型。

结果

100例脾门区SA、脾脏、胰腺三维模型重建成功率均为100%(100/100)。SA一级分支数目为1支者4例(4%),2支76例(76%),3支15例(15%),多支(≥4支)5例(5%)。SA总分支点与脾门的距离为0~68 mm,中位数为19 mm。SA总分支点与胰尾末端的距离为0~127 mm,中位数为16 mm。脾门与胰尾的距离为0~138 mm,中位数为21 mm。SA分为5型:A型4例(4%),B型76例(76%),C型16例(16%),D型2例(2%),E型2例(2%)。

结论

脾门区解剖结构复杂多变,术前采用3DVT可对SA末端分支观察和个体化分型,该分型对临床实施精准个体化脾脏和胰腺手术具有一定指导意义。

Objective

To investigate the three-dimensional classification of splenic artery (SA) in splenic hilum based on three-dimensional visualization (3DVT).

Methods

CT scan data of 100 patients admitted to the First Affiliated Hospital of Anhui Medical University and Yijishan Hospital Affiliated to Wannan Medical College from June, 2018 to June, 2021 were retrospectively analyzed. The informed consents of all patients were obtained and the local ethical committee approval was received. Among them, 61 patients were male and 39 female, aged from 49 to 88 years, with a median age of 63 years. All patients received thin-slice enhanced CT scan, and the data were extracted and imported into the 3D visualization system for 3D reconstruction. The number, distribution range, three-dimensional direction of SA branches, and the spatial relationship with the end of pancreatic tail and splenic hilum were observed and 3D classification were performed.

Results

The success rate of 3D model reconstruction of SA in the splenic hilum, spleen and pancreas in 100 patients was 100%(100/100). Regarding the number of primary SA branches, 4 patients (4%) had 1 branch, 2 branches in 76 cases (76%), 3 branches in 15 cases (15%) and multiple branches (≥4) in 5 cases (5%), respectively. The distance between the primary branching of SA and splenic hilum was 0-68 mm, with a median of 19 mm. The distance between the primary branching of SA and the end of pancreatic tail was 0-127 mm, with a median of 16 mm. The distance between splenic hilum and pancreatic tail was 0-138 mm, with a median of 21 mm. SA could be divided into 5 types: type A in 4 cases (4%), type B in 76 cases (76%), type C in 16 cases (16%), type D in 2 cases (2%) and type E in 2 cases (2%), respectively.

Conclusions

The anatomical structure of splenic hilum is complex and varied. Preoperatively, 3DVT can be applied to observe and classify the terminal branches of SA, which can provide guidance for precise and individualized splenic, pancreatic surgeries.

图1 一例患者基于3DVT脾门区SA的三维分型A型注:SA不发出分支直接进入脾门;3DVT为三维可视化技术,SA为脾动脉
图2 三例患者基于3DVT脾门区SA的三维分型B型及其亚型注:B型为SA在脾门区发出2支分支,其中a为B1型,发出分支位置在胰尾末端左侧,之后分支分别进入脾内;b为B2型,发出分支位置在胰尾末端右侧;c为B3型,发出分支位置与胰尾末端一致;3DVT为三维可视化技术,SA为脾动脉
图3 三例患者基于3DVT脾门区SA的三维分型C型及其亚型注:C型为SA在脾门区发出3支分支,其中a为C1型,发出分支位置在胰尾末端左侧,之后分支分别进入脾内;b为C2型,发出分支位置在胰尾末端右侧;c为C3型,发出分支位置与胰尾末端一致;3DVT为三维可视化技术,SA为脾动脉
图4 两例患者基于3DVT脾门区SA的三维分型D型及其亚型注:D型为SA在脾门区发出4支分支,其中a为D1型,发出分支位置在胰尾末端左侧,之后分支分别进入脾内;b为D2型,发出分支位置在胰尾末端右侧;3DVT为三维可视化技术,SA为脾动脉
图5 两例患者基于3DVT脾门区SA的三维分型E型及其亚型注:E型为SA在脾门区发出4支以上分支,其中a为E1型,发出分支位置在胰尾末端左侧,之后分支分别进入脾内;b为E2型,发出分支位置在胰尾末端右侧;3DVT为三维可视化技术,SA为脾动脉
[1]
Caliskan E, Acar T, Ozturk M, et al. Coeliac trunk and common hepatic artery variations in children: an analysis with computed tomography angiography[J]. Folia Morphol, 2018, 77(4):670-676.
[2]
Kervancioglu S, Yilmaz FG, Gulsen M, et al. Massive upper gastrointestinal bleeding from an accessory splenic artery mimicking isolated gastric varices[J]. Folia Morphol, 2013, 72(4):366-370.
[3]
Felli E, Wakabayashi T, Mascagni P, et al. Aberrant splenic artery rising from the superior mesenteric artery: a rare but important anatomical variation[J]. Surg Radiol Anat, 2019, 41(3):339-341.
[4]
Pandey SK, Bhattacharya S, Mishra RN, et al. Anatomical variations of the splenic artery and its clinical implications[J]. Clin Anat, 2004, 17(6):497-502.
[5]
Silva LF, Silveira LM, Timbó PS, et al. Morfometric study of arterial branching of the spleen compared to radiological study[J]. Rev Col Bras Cir, 2011, 38(3):181-185.
[6]
Zheng CH, Xu M, Huang CM, et al. Anatomy and influence of the splenic artery in laparoscopic spleen-preserving splenic lymphadenectomy[J]. World J Gastroenterol, 2015, 21(27):8389-8397.
[7]
Daisy Sahni A, Indar Jit B, Gupta CN, et al. Branches of the splenic artery and splenic arterial segments[J]. Clin Anat, 2003, 16(5):371-377.
[8]
Ishikawa Y, Ehara K, Yamada T, et al. Three-dimensional computed tomography analysis of the vascular anatomy of the splenic hilum for gastric cancer surgery[J]. Surg Today, 2018, 48(9):841-847.
[9]
Fang C, An J, Bruno A, et al. Consensus recommendations of three-dimensional visualization for diagnosis and management of liver diseases[J]. Hepatol Int, 2020, 14(4):437-453.
[10]
Cortés JA, Gómez Pellico L. Arterial segmentation in the spleen[J]. Surg Radiol Anat, 1988, 10(4):323-332.
[11]
Ignjatovic D, Stimec B, Zivanovic V. The basis for splenic segmental dearterialization: a post-mortem study[J]. Surg Radiol Anat, 2005, 27(1):15-18.
[12]
Zhu J, Zheng S, Zhang X, et al. Magnetic resonance imaging-guided three-dimensional real-time bile duct reconstruction and end-to-end anastomosis under laparoscopy: a case report[J]. J Minim Access Surg, 2020, 16(1):74-76.
[13]
Miyamoto R, Oshiro Y, Nakayama K, et al. Three-dimensional simulation of pancreatic surgery showing the size and location of the main pancreatic duct[J]. Surg Today, 2017, 47(3):357-364.
[14]
Miyamoto R, Oshiro Y, Nakayama K, et al. Impact of three-dimensional surgical simulation on pancreatic surgery[J]. Gastrointest Tumors, 2018, 4(3/4):84-89.
[15]
Lin J, Luo W, Fang C, et al. Laparoscopic anatomic combined subsegmentectomy of segment 8 via the tailored strategy using digital intelligent technology[J]. Surg Oncol, 2021(38):101622.
[16]
Matsuda T, Iwasaki T, Sumi Y, et al. Laparoscopic complete mesocolic excision for right-sided colon cancer using a cranial approach: anatomical and embryological consideration[J]. Int J Colorectal Dis, 2017, 32(1):139-141.
[17]
Miyake H, Murono K, Kawai K, et al. Evaluation of the vascular anatomy of the left-sided colon focused on the accessory middle colic artery: a single-centre study of 734 patients[J]. Colorectal Dis, 2018, 20(11):1041-1046.
[18]
Ishikawa Y, Ban D, Watanabe S, et al. Splenic artery as a simple landmark indicating difficulty during laparoscopic distal pancreatectomy[J]. Asian J Endosc Surg, 2019, 12(1):81-87.
[19]
Madoff DC, Denys A, Wallace MJ, et al. Splenic arterial interventions: anatomy, indications, technical considerations, and potential complications[J]. Radiographics, 2005, 25 Suppl 1:S191-211.
[20]
Warshaw AL. Distal pancreatectomy with preservation of the spleen[J]. J Hepatobiliary Pancreat Sci, 2010, 17(6):808-812.
[21]
Yongfei H, Javed AA, Burkhart R, et al. Geographical variation and trends in outcomes of laparoscopic spleen-preserving distal pancreatectomy with or without splenic vessel preservation: a meta-analysis[J]. Int J Surg, 2017(45):47-55.
[1] 王鑫光, 李杨, 何宜蓁, 田华. 3D打印技术在膝关节置换翻修术中的应用研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(01): 93-97.
[2] 滕元君, 谭念, 贾更新, 张政, 李昌玺, 郭来威, 赵良功, 夏亚一. 不同胫骨隧道位置对后交叉韧带杀伤角影响的定量研究[J]. 中华关节外科杂志(电子版), 2022, 16(06): 729-734.
[3] 田发兰, 陈见中, 扎西卓玛, 喻定刚. 三维可视化技术在复杂泡型肝包虫病治疗中的临床应用[J]. 中华普通外科学文献(电子版), 2023, 17(04): 257-261.
[4] 张孔玺, 李小红, 李越洲, 商中华. 选择性脾动脉栓塞术与传统开腹手术治疗外伤性脾破裂安全性和有效性的Meta分析[J]. 中华普通外科学文献(电子版), 2022, 16(06): 452-460.
[5] 陈亚峰, 李江斌, 王栋, 臧莉, 鲁建国, 董瑞. 腹腔镜脾切除术在巨脾脾动脉栓塞后远期治疗中的应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 571-574.
[6] 齐普良, 田青山, 马丽娜, 李彩霞, 阿吉德. ICG示踪联合三维可视化技术指导下改良右半肝切除术治疗肝细胞癌的回顾性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 162-166.
[7] 祝丽娜, 杨子祯, 张迪, 张勇, 蔡金贞, 王建红. 超声造影在肝移植术后肝动脉并发症中的应用价值[J]. 中华移植杂志(电子版), 2023, 17(04): 240-245.
[8] 陈尚雄, 肖航, 张荣杰, 李超, 张彬, 胡春芳, 郝迎学. 达芬奇机器人手术系统辅助脾动脉瘤切除重建术近期临床疗效分析[J]. 中华腔镜外科杂志(电子版), 2022, 15(06): 376-380.
[9] 费发珠, 张帅, 刘发蓉, 芦佳骏, 任宾, 樊海宁. 三维可视化联合术中ICG荧光引导腹腔镜肝包虫病切除术一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 577-580.
[10] 王建奇, 陈政良, 刘雨, 俞星新, 耿志达, 姜洪池, 梁英健. 基于160例患者CT三维重建的肝血管解剖变异分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 427-433.
[11] 陈亚峰, 李江斌, 王栋, 鲁建国, 董瑞. 脾动脉栓塞术后远期腹腔镜巨脾切除术一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 454-456.
[12] 许语阳, 吕云福, 王葆春. 乙肝后肝硬化门静脉高压症脾肿大外科治疗进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 469-473.
[13] 李映安, 晋云, 储心昀, 胡苹苹, 王峻峰. 混合现实技术在腹腔镜肝切除术中导航的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 401-406.
[14] 王祎, 王峻峰, 杨超, 晋云, 胡苹苹. 数字医学技术在肝脏分段及解剖性肝切除中的应用现状[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 16-21.
[15] 刘文瑛, 欧阳再兴, 朱剑华, 吴黎明, 谭勇, 宋灏, 朱玉珍, 黄从云. 多模态影像技术在精准肝癌肝切除中的应用[J]. 中华肝脏外科手术学电子杂志, 2022, 11(06): 574-579.
阅读次数
全文


摘要