切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2024, Vol. 13 ›› Issue (04) : 568 -576. doi: 10.3877/cma.j.issn.2095-3232.2024.04.022

基础研究

基于生物信息学分析探讨肝癌BRD4与预后关系及其ceRNA调控网络构建
张杰1, 田广磊1, 陈雄1,()   
  1. 1. 830001 乌鲁木齐,新疆维吾尔自治区人民医院肝胆胰医学诊疗中心
  • 收稿日期:2024-03-20 出版日期:2024-08-10
  • 通信作者: 陈雄
  • 基金资助:
    新疆维吾尔自治区自然科学基金(2021D01C210)

Relationship between BRD4 and prognosis of hepatocellular carcinoma patients based on bioinformatics analysis and construction of ceRNA regulatory network

Jie Zhang1, Guanglei Tian1, Xiong Chen1,()   

  1. 1. Hepatobiliary Pancreatic Medicne Diagnosis And Treatment Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
  • Received:2024-03-20 Published:2024-08-10
  • Corresponding author: Xiong Chen
引用本文:

张杰, 田广磊, 陈雄. 基于生物信息学分析探讨肝癌BRD4与预后关系及其ceRNA调控网络构建[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 568-576.

Jie Zhang, Guanglei Tian, Xiong Chen. Relationship between BRD4 and prognosis of hepatocellular carcinoma patients based on bioinformatics analysis and construction of ceRNA regulatory network[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(04): 568-576.

目的

基于生物信息分析探讨肝细胞癌(HCC)溴结构域蛋白4(BRD4)与预后关系及其竞争性内源性RNA(ceRNA)调控网络的构建。

方法

TCGA数据库中将HCC样本分为两组,采用生存R软件包分析评估BRD4对总体生存期(OS)的影响。TIMER数据库评估免疫细胞的浸润水平,采用Spearman相关分析法分析BRD4表达与癌症免疫浸润水平的相关性。采用ClusterProfiler R软件包对KEGG进行基因集富集分析。从癌症基因组图谱、基因型-组织表达和GSE147889数据集收集了HCC及正常对照的lncRNAs、microRNAs(miRNAs,miR)和mRNAs表达数据并进行差异分析,预测调控其表达的miRNAs及lncRNAs,构建ceRNA调控网络。从新疆维吾尔自治区人民医院收集了10个HCC组织样本及匹配的非癌症组织样本,检测BRD4及相关ceRNA网络基因的表达。在HCCLM3细胞中进行过表达和敲降BRD4,进行凋亡、侵袭和伤口愈合试验。

结果

生存分析显示BRD4高表达的HCC患者生存率较差(HR=1.020,P<0.05)。BRD4的高表达与B细胞、CD4+ T细胞、中性粒细胞、巨噬细胞和树突细胞呈正相关(rs=0.265,0.433,0.302,0.332,0.258;P<0.05)。基因集富集分析显示,BRD4可能与胰岛素信号通路、抑制氧化磷酸化有关。通过3个数据库差异分析获得2个DEmRs调控因子miR-200a-3p和miR-141-3p,鉴定出2个交集lncRNAs(MYLK-AS1和DLX6-AS1),并构建ceRNA网络。组织样本检测证实BRD4在HCC中的表达高于对照组。敲除BRD4显著抑制HCCLM3细胞的侵袭和迁移,并促进细胞凋亡。双荧光素酶测定证实miR-200a-3p调节的BRD4和MYLK-AS1、DLX6-AS1是上游海绵。

结论

BRD4在HCC中的高表达与不良预后相关,BRD4过表达促进了HCC细胞的侵袭和迁移,并通过ceRNA调控机制参与HCC发生和发展。

Objective

To investigate the relationship between BRD4 and prognosis of hepatocellular carcinoma (HCC) based on bioinformatics analysis and the construction of competitive endogenous RNA (ceRNA) regulatory network.

Methods

HCC samples from TCGA database were divided into two groups. The effect of BRD4 on overall survival (OS) was evaluated by R software package. The infiltration level of immune cells was evaluated by TIMER database. The correlation between BRD4 expression and cancer immune infiltration level was analyzed by Spearman's correlation analysis. KEGG gene set enrichment analyses was performed by ClusterProfiler R software package. The expression levels of lncRNAs, microRNAs (miRNAs, miR) and mRNAs in HCC and normal controls were collected from TCGA, Genotype-Tissue Expression (GTEx) and GSE147889 datasets, and the differences were analyzed. The miRNAs and lncRNAs regulating their expression profiles were predicted and a ceRNA regulatory network was constructed. 10 HCC tissue samples and matched non-cancer tissue samples were collected from People's Hospital of Xinjiang Uygur Autonomous Region. The expression levels of BRD4 and related ceRNA network genes were detected. BRD4 was overexpressed and knocked down in HCCLM3 cells. Cell apoptosis, invasion and wound healing assays were carried out.

Results

Survival analysis showed that HCC patients with high BRD4 expression obtained poor survival rate (HR=1.020, P<0.05). High expression of BRD4 was positively correlated with B cells, CD4+ T cells, neutrophils, macrophages and dendritic cells (rs=0.265, 0.433, 0.302, 0.332, 0.258; P<0.05). Gene set enrichment analysis showed that BRD4 was probably correlated with insulin signaling pathway and inhibition of oxidative phosphorylation. 2 DEmRs regulatory factors of miR-200a-3p and miR-141-3p were obtained through the analysis of differences among 3 databases, and 2 overlapping lncRNAs (MYLK-AS1 and DLX6-AS1) were identified, and the ceRNA network was constructed. Tissue sample detection confirmed that the expression of BRD4 in HCC was higher than that in normal controls. Knockout of BRD4 significantly inhibited the invasion and migration and promoted cell apoptosis of HCCLM3 cells. Dual luciferase assay confirmed that BRD4, MYLK-AS1 and DLX6-AS1 regulated by miR-200a-3p were the upstream sponges.

Conclusions

High expression of BRD4 in HCC is associated with poor prognosis. Overexpression of BRD4 promotes the invasion and migration of HCC cells, and participates in the incidence and development of HCC through ceRNA regulatary mechanism.

表1 本研究所用引物
图1 BRD4与HCC患者预后和免疫浸润的关系注:a为TCGA队列中BRD4高表达和BRD4低表达患者OS的Kaplan-Meier曲线比较,b为BRD4表达与免疫细胞评分的相关性;BRD4为结构域蛋白4,TCGA为癌症基因组图谱,OS为总体生存率,HCC为肝细胞癌
图2 BRD4高表达和低表达HCC的基因GSEA分析注:a为BRD4高表达HCC样本中基因的KEGG途径分析,b为BRD4低表达HCC样本中基因的KEGG途径;BRD4为结构域蛋白4,GSEA为基因集富集分析,HCC为肝细胞癌
图3 调节BRD4的lncRNA鉴定与ceRNA网络构建注:a为Targetscan数据库、Starbase数据库和miRDB数据库中预测BRD4的miRNA调控因子;b为HCC和对照组之间差异表达的miRNAs的热图;c差异表达lncRNAs的火山图;d为BRD4的ceRNA调控网络的桑基图;BRD4为结构域蛋白4,miRNA为微核糖核酸,HCC为肝细胞癌,lncRNA为长链非编码RNA,ceRNA为竞争性内源性RNA
图4 HCC样本中BRD4的表达水平注:a为HCC和对照中BRD4的mRNA水平,***为P<0.001;b为Western blot检测HCC和对照中BRD4的蛋白质水平,***为P<0.001;NC为对照组,BRD4为结构域蛋白4,HCC为肝细胞癌
图5 BRD4影响HCC的细胞侵袭和划痕实验注:a为siRNA-BRD4 mRNA水平降低,OE-BRD4组mRNA水平升高;b、c分别为Transwell侵袭和划痕实验示siRNA-BRD4组侵袭和迁移能力减弱,OE-BRD4组增强;d为显微镜下Transwell侵袭试验细胞穿膜情况;e为流式细胞检测细胞凋亡(第四象限);*为与NC组比较P<0.05,**为与NC组比较P<0.01,NC为对照组;BRD4为结构域蛋白4,HCC为肝细胞癌
图6 双荧光素酶测定BRD4和miR-200a-3p的靶向结合注:***为与NC组比较P<0.001;BRD4为结构域蛋白4;BRD4-mut为miR-200潜在结合位点突变,BRD4-WT为野生型BRD4
图7 qRT-PCR检测HCC的BRD4调控中差异表达基因注:***为与NC组比较P<0.001;RD4为结构域蛋白4,HCC为肝癌细胞,NC为对照组
[1]
Song T, Li L, Wu S, et al. Peripheral blood genetic biomarkers for the early diagnosis of hepatocellular carcinoma[J]. Front Oncol, 2021, 11:583714.
[2]
Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10):589-604.
[3]
El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis[J]. Gastroenterology, 2007, 132(7):2557-2576.
[4]
Kole C, Charalampakis N, Tsakatikas S, et al. Immunotherapy for hepatocellular carcinoma: a 2021 update[J]. Cancers, 2020, 12(10):2859.
[5]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.
[6]
Chen Z, Xie H, Hu M, et al. Recent progress in treatment of hepatocellular carcinoma[J]. Am J Cancer Res, 2020, 10(9):2993-3036.
[7]
Yu R, Tan Z, Xiang X, et al. Effectiveness of PIVKA-II in the detection of hepatocellular carcinoma based on real-world clinical data[J]. BMC Cancer, 2017, 17(1):608.
[8]
Harding JJ, Nandakumar S, Armenia J, et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies[J]. Clin Cancer Res, 2019, 25(7):2116-2126.
[9]
El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040):an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389(10088):2492-2502.
[10]
Devaiah BN, Mu J, Akman B, et al. MYC protein stability is negatively regulated by BRD4[J]. Proc Natl Acad Sci USA, 2020, 117(24):13457-13467.
[11]
Wang S, Pike AM, Lee SS, et al. BRD4 inhibitors block telomere elongation[J]. Nucleic Acids Res, 2017, 45(14):8403-8410.
[12]
Jiao F, Han T, Yuan C, et al. Caveolin-2 is regulated by BRD4 and contributes to cell growth in pancreatic cancer[J]. Cancer Cell Int, 2020, 20: 55.
[13]
Choi HI, An GY, Baek M, et al. BET inhibitor suppresses migration of human hepatocellular carcinoma by inhibiting SMARCA4[J]. Sci Rep, 2021, 11(1):11799.
[14]
White ME, Fenger JM, Carson WE 3rd. Emerging roles of and therapeutic strategies targeting BRD4 in cancer[J]. Cell Immunol, 2019, 337:48-53.
[15]
Long J, Bai Y, Yang X, et al. Construction and comprehensive analysis of a ceRNA network to reveal potential prognostic biomarkers for hepatocellular carcinoma[J]. Cancer Cell Int, 2019, 19:90.
[16]
Pu Z, Zhu Y, Wang X, et al. Identification of prognostic biomarkers and correlation with immune infiltrates in hepatocellular carcinoma based on a competing endogenous RNA network[J]. Front Genet, 2021, 12:591623.
[17]
Zhu J, Wang L, Zhou Y, et al. Comprehensive analysis of the relationship between competitive endogenous RNA (ceRNA) networks and tumor infiltrating-cells in hepatocellular carcinoma[J]. J Gastrointest Oncol, 2020, 11(6):1381-1398.
[18]
Shi Y, Zhang DD, Liu JB, et al. Comprehensive analysis to identify DLEU2L/TAOK1 axis as a prognostic biomarker in hepatocellular carcinoma[J]. Mol Ther Nucleic Acids, 2021, 23:702-718.
[19]
Zhang J, Lou W. A key mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network linked to diagnosis and prognosis of hepatocellular carcinoma[J]. Front Oncol, 2020, 10:340.
[20]
Yan R, Chu J, Zhou Y, et al. Ubiquitin-specific protease 22 ameliorates chronic alcohol-associated liver disease by regulating BRD4[J]. Pharmacol Res, 2021, 168: 105594.
[21]
Zhang P, Dong Z, Cai J, et al. BRD4 promotes tumor growth and epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Int J Immunopathol Pharmacol, 2015, 28(1):36-44.
[22]
Ding N, Hah N, Yu RT, et al. BRD4 is a novel therapeutic target for liver fibrosis[J]. Proc Natl Acad Sci USA, 2015, 112(51):15713-15718.
[23]
Tsang FHC, Law CT, Tang TCC, et al. Aberrant super-enhancer landscape in human hepatocellular carcinoma[J]. Hepatology, 2019, 69(6):2502-2517.
[24]
Bao Y, Wu X, Chen J, et al. Brd4 modulates the innate immune response through Mnk2-eIF4E pathway-dependent translational control of IκBα[J]. Proc Natl Acad Sci USA, 2017, 114(20):E3993-4001.
[25]
Chen YR, Ouyang SS, Chen YL, et al. BRD4/8/9 are prognostic biomarkers and associated with immune infiltrates in hepatocellular carcinoma[J]. Aging, 2020, 12(17):17541-17567.
[26]
Enguita-Germán M, Fortes P. Targeting the insulin-like growth factor pathway in hepatocellular carcinoma[J]. World J Hepatol, 2014, 6(10):716-737.
[27]
Zhang C, Zhang J. Decreased expression of microRNA-223 promotes cell proliferation in hepatocellular carcinoma cells via the insulin-like growth factor-1 signaling pathway[J]. Exp Ther Med, 2018, 15(5):4325-4331.
[28]
Kim J, Yu L, Chen W, et al. Wild-type p53 promotes cancer metabolic switch by inducing PUMA-dependent suppression of oxidative phosphorylation[J]. Cancer Cell, 2019, 35(2):191-203.e8.
[29]
DeWaal D, Nogueira V, Terry AR, et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin[J]. Nat Commun, 2018, 9(1):446.
[30]
Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer[J]. Nat Rev Genet, 2016, 17(12):719-732.
[31]
Braga EA, Fridman MV, Moscovtsev AA, et al. LncRNAs in ovarian cancer progression, metastasis, and main pathways: ceRNA and alternative mechanisms[J]. Int J Mol Sci, 2020, 21(22):8855.
[32]
Wang L, Xiao B, Yu T, et al. lncRNA PVT1 promotes the migration of gastric cancer by functioning as ceRNA of miR-30a and regulating Snail[J]. J Cell Physiol, 2021, 236(1):536-548.
[33]
Liu GM, Zeng HD, Zhang CY, et al. Identification of METTL3 as an adverse prognostic biomarker in hepatocellular carcinoma[J]. Dig Dis Sci, 2021, 66(4):1110-1126.
[34]
Gong Y, Mao J, Wu D, et al. Circ-ZEB1.33 promotes the proliferation of human HCC by sponging miR-200a-3p and upregulating CDK6[J]. Cancer Cell Int, 2018, 18:116.
[35]
Liu J, Zhao SY, Jiang Q, et al. Long noncoding RNA MYLK-AS1 promotes growth and invasion of hepatocellular carcinoma through the EGFR/HER2-ERK1/2 signaling pathway[J]. Int J Biol Sci, 2020, 16(11):1989-2000.
[36]
Wang LP, Lin J, Ma XQ, et al. Exosomal DLX6-AS1 from hepatocellular carcinoma cells induces M2 macrophage polarization to promote migration and invasion in hepatocellular carcinoma through microRNA-15a-5p/CXCL17 axis[J]. J Exp Clin Cancer Res, 2021, 40(1):177.
[1] 陈怡芳, 黄晓卉. 肝细胞癌中对氧磷酶2的表达及临床意义[J]. 中华普通外科学文献(电子版), 2024, 18(03): 186-191.
[2] 陆朝阳, 金也, 孙备. 腹腔镜解剖性肝切除的发展[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 363-366.
[3] 龚财芳, 赵俊宇, 游川. 围手术期肠内营养在肝癌肝切除患者中有效性及安全性的Meta分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 551-556.
[4] 中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 407-449.
[5] 钟造茂, 罗文超, 蔡满航, 陈显育, 钟跃思. 肝癌肝切除术后肝衰竭的危险因素分析及列线图模型构建[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 289-295.
[6] 曾谣, 谢琴, 陈显育, 王平根, 毛玲秋, 何丹玲, 杜飞, 郑希彦, 何函樨. CDC42EP2基因与肝癌预后、免疫细胞浸润关系及其对细胞迁移侵袭的影响[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 363-369.
[7] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
[8] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[9] 王礼光, 严庆, 廖珊, 符荣党, 陈焕伟. 微血管侵犯及手术切缘对肝细胞癌患者术后生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 151-157.
[10] 杨建彬, 陈建华, 张文华, 刘建东. 中心静脉压差值对腹腔镜肝细胞癌肝切除术中出血的影响[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 158-162.
[11] 夏辉, 戴斌, 冉君, 王威, 龚昭, 周程. DEP结构域蛋白1B在肝细胞癌中的表达及功能[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 205-213.
[12] 陈显育, 曾谣, 莫钊鸿, 翟航, 张广权, 钟造茂, 陈署贤. 生物信息学分析CETP基因在肝癌中表达及其对预后和免疫的影响[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 214-219.
[13] 吕垒, 冯啸, 何凯明, 高成立, 杨洲, 贾昌昌, 傅斌生. 组蛋白伴侣VPS72驱动H2AFZ的表达并协同促进肝癌进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 220-226.
[14] 宋燕京, 乔江春, 宋京海. 中晚期肝癌TACE联合免疫靶向转化治疗后右半肝切除术一例[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 227-230.
[15] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
阅读次数
全文


摘要