切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 15 ›› Issue (01) : 45 -52. doi: 10.3877/cma.j.issn.2095-3232.2026.01.008

临床研究

基于CT影像组学构建肝细胞癌微血管侵犯预测模型
何泰霖1, 王峻峰2,3, 田林云4, 王罡5, 杨超2,(), 王海峰1   
  1. 1 625000 四川省雅安市人民医院泌尿外科
    4 625000 四川省雅安市人民医院泌尿外科心内科
    2 650032 昆明理工大学附属医院(云南省第一人民医院)肝胆外科
    3 650032 昆明理工大学附属医院(云南省第一人民医院)数字医学研究中心
    5 650032 昆明理工大学附属医院(云南省第一人民医院)放射科
  • 收稿日期:2025-08-16 出版日期:2025-02-10
  • 通信作者: 杨超
  • 基金资助:
    云南省医学领军人才基金(L-2019016); 云南省名医专项基金(KH-SWR-2020-001)

Construction of a prediction model for microvascular invasion in hepatocellular carcinoma based on CT-based radiomics

Tailin He1, Junfeng Wang2,3, Linyun Tian4, Gang Wang5, Chao Yang2,(), Haifeng Wang1   

  1. 1 Department of Urology, Ya'an People's Hospital, Ya'an 625000, China
    4 Department of Cardiology, Ya'an People's Hospital, Ya'an 625000, China
    2 Department of Hepatobiliary Surgery, Affiliated Hospital of Kunming University of Science and Technology (The First People's Hospital of Yunnan Province), Kunming 650032, China
    3 Digital Medicine Research Center, Affiliated Hospital of Kunming University of Science and Technology (The First People's Hospital of Yunnan Province), Kunming 650032, China
    5 Department of Radiology, Affiliated Hospital of Kunming University of Science and Technology (The First People's Hospital of Yunnan Province), Kunming 650032, China
  • Received:2025-08-16 Published:2025-02-10
  • Corresponding author: Chao Yang
引用本文:

何泰霖, 王峻峰, 田林云, 王罡, 杨超, 王海峰. 基于CT影像组学构建肝细胞癌微血管侵犯预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 15(01): 45-52.

Tailin He, Junfeng Wang, Linyun Tian, Gang Wang, Chao Yang, Haifeng Wang. Construction of a prediction model for microvascular invasion in hepatocellular carcinoma based on CT-based radiomics[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 15(01): 45-52.

目的

探讨基于CT影像组学构建的肝细胞癌(肝癌)微血管侵犯(MVI)预测模型的价值。

方法

回顾性分析2015至2022年昆明理工大学附属医院肝胆外科经肝癌手术切除的129例患者临床资料。其中男108例,女21例;年龄25~83岁,中位年龄52岁。按3∶1随机数表法将患者分成训练集96例,测试集33例。所有患者均在术前1个月内接受增强CT检查。通过影像组学人工智能大数据分析平台运用Lasso算法从临床和影像组学特征中筛选出最优特征。使用增强CT图像数据建立基于术前CT的肿瘤和瘤周0~1、1~2、2~3 cm的单一临床模型(C模型)、单一影像组学模型(R模型)。根据最优特征相对应的加权系数,得到每一个模型的影像组学评分(Rad-score),依据Rad-score得出每个模型的ROC AUC。模型预测能力采用一致性指数(C-index)评估,指数越高预测能力越强。

结果

运用Lasso算法从包含临床和影像组学特征在内的1 818个特征中分别筛选出肿瘤、瘤周0~1、1~2、2~3 cm的3、9、15、50个最优特征指标。训练集中采用五折交叉验证的方法进行惩罚参数优化,构建Lasso-Logistic回归模型。测试集中R模型预测 MVI风险,较C模型的表现更好(AUC=0.883、0.848、0.800、0.848和0.500、0.704、0.500、0.639)。训练集和测试集4个R模型估计的风险和实际MVI发生之间有良好的一致性,R模型均具有很好的预测能力(C-index=0.746和0.883,0.738和0.848,0.732和0.800,0.672和0.848),并有很好的校正能力。

结论

本研究建立了基于术前CT的肿瘤和瘤周0~1、1~2、2~3 cm的R模型,且R模型均优于C模型预测结果。R模型转化的Rad-score可作为MVI发生的独立预测因素。

Objective

To investigate the prediction value of CT-based radiomics model for microvascular invasion (MVI) in hepatocellular carcinoma (HCC).

Methods

Clinical data of 129 patients who underwent surgical resection in the Affiliated Hospital of Kunming University of Science and Technology from 2015 to 2022 were retrospectively analyzed. Among them, 108 patients were male and 21 female, aged from 25 to 83 years, with a median age of 52 years. According to the 3: 1 ratio using random number table method, all cases were divided into the training (n=96) and test sets (n=33). All patients received enhanced CT scan within preoperative 1 month. Through the artificial intelligence big-data analysis platform of imaging radiomics, Lasso algorithm was used to screen the optimal features from clinical and imaging radiomic features. Using enhanced CT images, a single clinical model (C model) and a single imaging radiomic model (R model) were constructed based on preoperative CT scan of tumors and peritumoral 0-1, 1-2 and 2-3 cm. According to the weighted coefficient corresponding to the optimal features, the radiomic score (Rad-score) of each model was obtained, and the area under the ROC curve (AUC) of each model was calculated according to the Rad-score. The prediction capability of the model was evaluated by the consistency index (C-index). The higher the index, the higher the prediction ability.

Results

Lasso algorithm was employed to screen 3, 9, 15 and 50 optimal features of tumor and peritumoral 0-1, 1-2 and 2-3 cm from 1818 clinical and imaging radiomic features. In the training set, the penalty parameters were optimized by 5-fold cross-validation, and Lasso-Logistic regression model was constructed. In the test set, R model could better predict the risk of MVI than C model (AUC=0.883, 0.848, 0.800, 0.848 and 0.500, 0.704, 0.500 and 0.639). High consistency was found between the risk estimated by 4 R models in the training and test sets and the actual risk of MVI, indicating R models yielded good predictive ability (C-index=0.746 and 0.883, 0.738 and 0.848, 0.732 and 0.800, 0.672 and 0.848) and favorable correction performance.

Conclusions

In this study, R models of tumor and peritumoral 0-1, 1-2 and 2-3 cm are established based on preoperative CT scan. R models perform better than C models. Rad-score transformed by R models can be used as an independent predictor of MVI.

图1 基于CT影像组学模型预测肝癌MVI影像组学分析流程 注:MVI为微血管侵犯
表1 肝癌MVI阳性和阴性患者临床病理学特征
图2 基于术前CT建立预测肝癌MVI的R模型筛选特征数 注:MVI为微血管侵犯,R模型为影像组学模型
图3 基于CT影像组学预测肝癌MVI的Lasso-Logistic回归模型 注:每条彩色线代表每个特征对应的系数,Lasso 调整 λ,基于最小标准通过五折交叉验证调整 Lasso 模型中的 λ;MVI为微血管侵犯
表2 基于CT影像组学预测肝癌MVI的各个模型之间预测能力对比
表3 基于CT影像组学预测肝癌MVI的R模型一致性
图4 基于术前CT建立瘤周1~2 cm R模型的校正曲线图 注:横轴表示影像组学模型预测肝癌MVI的平均预测值,而纵轴表示预测MVI的阳性分数;蓝色表示训练集,红线表示测试集,可以预测模型真实情况,当训练集和测试集趋势越相似表明预测MVI发生的可能性与MVI状态的实际情况越吻合;红色线越与蓝色线靠近,表示该模型一致性越好,验证效果越佳;MVI为微血管侵犯,R模型为影像组学模型
[1]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338.
[2]
He X, Wu J, Holtorf AP, et al. Health economic assessment of Gd-EOB-DTPA MRI versus ECCM-MRI and multi-detector CT for diagnosis of hepatocellular carcinoma in China[J]. PLoS One, 2018, 13(1): e0191095. DOI: 10.1371/journal.pone.0191095.
[3]
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8): 1941-1953. DOI: 10.1002/ijc.31937.
[4]
Hesketh RL, Zhu AX, Oklu R. Hepatocellular carcinoma: can circulating tumor cells and radiogenomics deliver personalized care?[J]. Am J Clin Oncol, 2015, 38(4): 431-436. DOI: 10.1097/COC.0000000000000123.
[5]
Lee JS, Heo J, Libbrecht L, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells[J]. Nat Med, 2006, 12(4): 410-416. DOI: 10.1038/nm1377.
[6]
Hoshida Y, Villanueva A, Kobayashi M, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma[J]. N Engl J Med, 2008, 359(19): 1995-2004. DOI: 10.1056/NEJMoa0804525.
[7]
Hoshida Y, Toffanin S, Lachenmayer A, et al. Molecular classification and novel targets in hepatocellular carcinoma: recent advancements[J]. Semin Liver Dis, 2010, 30(1): 35-51. DOI: 10.1055/s-0030-1247131.
[8]
胡宁宁, 赵延荣, 王栋, 等. FMNL3与肝细胞癌肝移植受者预后的相关性研究[J/OL]. 中华移植杂志(电子版), 2024, 18(5): 283-288. DOI: 10.3877/cma.j.issn.1674-3903.2024.05.005.
[9]
Cook GJR, Azad G, Owczarczyk K, et al. Challenges and promises of PET radiomics[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1083-1089. DOI: 10.1016/j.ijrobp.2017.12.268.
[10]
Shen J, Wen J, Li C, et al. The prognostic value of microvascular invasion in early-intermediate stage hepatocelluar carcinoma: a propensity score matching analysis[J]. BMC Cancer, 2018, 18(1): 278. DOI: 10.1186/s12885-018-4196-x.
[11]
Chen ZH, Zhang XP, Wang H, et al. Effect of microvascular invasion on the postoperative long-term prognosis of solitary small HCC: a systematic review and meta-analysis[J]. HPB, 2019, 21(8): 935-944. DOI: 10.1016/j.hpb.2019.02.003.
[12]
Qin X, Zhu J, Tu Z, et al. Contrast-enhanced ultrasound with deep learning with attention mechanisms for predicting microvascular invasion in single hepatocellular carcinoma[J]. Acad Radiol, 2023, 30(Suppl 1): S73-S80. DOI: 10.1016/j.acra.2022.12.005.
[13]
Yue Q, Zhou Z, Zhang X, et al. Contrast-enhanced CT findings-based model to predict MVI in patients with hepatocellular carcinoma[J]. BMC Gastroenterol, 2022, 22(1): 544. DOI: 10.1186/s12876-022-02586-2.
[14]
Lu M, Qu Q, Xu L, et al. Prediction for aggressiveness and postoperative recurrence of hepatocellular carcinoma using gadoxetic acid-enhanced magnetic resonance imaging[J]. Acad Radiol, 2023, 30(5): 841-852. DOI: 10.1016/j.acra.2022.12.018.
[15]
何泰霖, 王峻峰, 晋云, 等. 基于影像组学模型预测肝癌微血管侵犯的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2022, 11(6): 649-652. DOI: 10.3877/cma.j.issn.2095-3232.2022.06.023.
[16]
乔婷, 王峻峰, 胡苹苹, 等. 三维重建技术与二维影像辅助肝切除术的Meta分析[J]. 中国普通外科杂志, 2021, 30(7): 805-813. DOI: 10.7659/j.issn.1005-6947.2021.07.007.
[17]
Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. DOI: 10.1148/radiol.2020191145.
[18]
Herz C, Fillion-Robin JC, Onken M, et al. dcmqi: an open source library for standardized communication of quantitative image analysis results using DICOM[J]. Cancer Res, 2017, 77(21): e87-e90. DOI: 10.1158/0008-5472.CAN-17-0336.
[19]
Fedorov A, Clunie D, Ulrich E, et al. DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research[J]. PeerJ, 2016, 4: e2057. DOI: 10.7717/peerj.2057.
[20]
Sathiya Keerthi S, Lin CJ. Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural Comput, 2003, 15(7): 1667-1689. DOI: 10.1162/089976603321891855.
[21]
Brown RA, Frayne R. A comparison of texture quantification techniques based on the Fourier and S transforms[J]. Med Phys, 2008, 35(11): 4998-5008. DOI: 10.1118/1.2992051.
[22]
刘璐璐, 杨虹, 邵国良, 等. 基于CT影像组学模型预测原发性肝癌3年生存期的价值[J]. 中华放射学杂志, 2018, 52(9): 681-686. DOI: 10.3760/cma.j.issn.1005-1201.2018.09.007.
[23]
Renzulli M, Brocchi S, Cucchetti A, et al. Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma?[J]. Radiology, 2016, 279(2): 432-442. DOI: 10.1148/radiol.2015150998.
[24]
Chandarana H, Robinson E, Hajdu CH, et al. Microvascular invasion in hepatocellular carcinoma: is it predictable with pretransplant MRI?[J]. AJR Am J Roentgenol, 2011, 196(5): 1083-1089. DOI: 10.2214/AJR.10.4720.
[25]
Renzulli M, Mottola M, Coppola F, et al. Automatically extracted machine learning features from preoperative CT to early predict microvascular invasion in HCC: the role of the zone of transition (ZOT)[J]. Cancers, 2022, 14(7): 1816. DOI: 10.3390/cancers14071816.
[26]
Granata V, Fusco R, Filice S, et al. The current role and future prospectives of functional parameters by diffusion weighted imaging in the assessment of histologic grade of HCC[J]. Infect Agent Cancer, 2018, 13: 23. DOI: 10.1186/s13027-018-0194-5.
[27]
Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. J Hepatol, 2019, 70(6): 1133-1144. DOI: 10.1016/j.jhep.2019.02.023.
[28]
Hu F, Zhang Y, Li M, et al. Preoperative prediction of microvascular invasion risk grades in hepatocellular carcinoma based on tumor and peritumor dual-region radiomics signatures[J]. Front Oncol, 2022, 12: 853336. DOI: 10.3389/fonc.2022.853336.
[29]
Zhou W, Zhang L, Wang K, et al. Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images[J]. J Magn Reson Imaging, 2017, 45(5): 1476-1484. DOI: 10.1002/jmri.25454.
[30]
Yang L, Gu D, Wei J, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2019, 8(5): 373-386. DOI: 10.1159/000494099.
[31]
Feng ST, Jia Y, Liao B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI[J]. Eur Radiol, 2019, 29(9): 4648-4659. DOI: 10.1007/s00330-018-5935-8.
[32]
Roayaie S, Blume IN, Thung SN, et al. A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma[J]. Gastroenterology, 2009, 137(3): 850-855. DOI: 10.1053/j.gastro.2009.06.003.
[33]
Zhang X, Ruan S, Xiao W, et al. Contrast-enhanced CT radiomics for preoperative evaluation of microvascular invasion in hepatocellular carcinoma: a two-center study[J]. Clin Transl Med, 2020, 10(2): e111. DOI: 10.1002/ctm2.111.
[34]
Meng XP, Wang YC, Zhou JY, et al. Comparison of MRI and CT for the prediction of microvascular invasion in solitary hepatocellular carcinoma based on a non-radiomics and radiomics method: which imaging modality is better?[J]. J Magn Reson Imaging, 2021, 54(2): 526-536. DOI: 10.1002/jmri.27575.
[1] 范风云, 吴晓东, 沈婉婷, 吴美琪, 于娜, 徐梦婷, 秦佳乐. 基于超声参数的延胡索酸水合酶缺陷型子宫平滑肌瘤预测模型的建立[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 868-875.
[2] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[3] 赵浩朗, 万千雪, 贾仲林. 多基因风险评分在非综合征型唇腭裂风险预测中的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(06): 410-417.
[4] 罗仲燃, 曾智豪, 黄梦娟, 何晓艺. 乳腺癌术后腋窝淋巴结负荷的多因素分析及预测模型的建立及验证[J/OL]. 中华普外科手术学杂志(电子版), 2026, 20(01): 46-50.
[5] 吴哲境, 李敬东. ICG荧光成像引导下腹腔镜肝切除术治疗肝癌的安全性和有效性Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 852-859.
[6] 黄少坚, 梁汉标, 李清平, 唐善华, 李青妍, 李芷西, 黄灿, 王小振, 陈灿辉, 王恺, 李川江. 基于影像组学和临床特征构建肝癌新辅助/转化治疗后病理学完全缓解预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 860-867.
[7] 王利皓, 罗世超, 唐强, 尚栋良, 段少博, 卢冰, 李海, 薛飞. 仑伐替尼和PD-1抑制剂预处理联合TACE序贯治疗CNLC分期Ⅲ期肝癌疗效及安全性[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 868-874.
[8] 李健文, 陈莹, 陈羲, 宗晓丹. 钆塞酸二钠增强MRI在高分化小肝癌和不典型增生结节鉴别诊断中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 875-881.
[9] 余萱, 贺需旗, 郭光辉, 谭雷, 李凯, 曾庆劲. 新型微波消融系统治疗血管旁与非血管旁肝癌的安全性及疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 888-893.
[10] 段兴福, 唐建中, 孙志为, 陈业盛, 高波, 费振浩. 后腹膜入路腹腔镜微波消融术治疗复发性肝癌的临床疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 919-924.
[11] 刘燕, 马亦旻. 消化道早癌患者内镜黏膜下剥离术后局部复发预测模型构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 576-582.
[12] 郑雨竹, 嵇灵, 章阳, 宋妮娜. 基于中医证型的肛肠手术后慢性疼痛风险预测模型构建[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 642-648.
[13] 王超, 张晓会, 李晓帆, 赵海丹. 维持性血液透析患者感染与心脑血管死亡风险的比较及联合预测模型构建[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 675-681.
[14] 郭岩, 赵灵芝, 石光英. 代谢相关脂肪性肝病患者发生冠心病的风险预测模型[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 682-688.
[15] 皇立媛, 浦洁, 王苏贵, 陈婷婷, 朱德慧, 胡雪. 中青年脑卒中患者应激障碍风险预测模型的构建与验证[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 504-512.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?