| [1] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338.
|
| [2] |
He X, Wu J, Holtorf AP, et al. Health economic assessment of Gd-EOB-DTPA MRI versus ECCM-MRI and multi-detector CT for diagnosis of hepatocellular carcinoma in China[J]. PLoS One, 2018, 13(1): e0191095. DOI: 10.1371/journal.pone.0191095.
|
| [3] |
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8): 1941-1953. DOI: 10.1002/ijc.31937.
|
| [4] |
Hesketh RL, Zhu AX, Oklu R. Hepatocellular carcinoma: can circulating tumor cells and radiogenomics deliver personalized care?[J]. Am J Clin Oncol, 2015, 38(4): 431-436. DOI: 10.1097/COC.0000000000000123.
|
| [5] |
Lee JS, Heo J, Libbrecht L, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells[J]. Nat Med, 2006, 12(4): 410-416. DOI: 10.1038/nm1377.
|
| [6] |
Hoshida Y, Villanueva A, Kobayashi M, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma[J]. N Engl J Med, 2008, 359(19): 1995-2004. DOI: 10.1056/NEJMoa0804525.
|
| [7] |
Hoshida Y, Toffanin S, Lachenmayer A, et al. Molecular classification and novel targets in hepatocellular carcinoma: recent advancements[J]. Semin Liver Dis, 2010, 30(1): 35-51. DOI: 10.1055/s-0030-1247131.
|
| [8] |
|
| [9] |
Cook GJR, Azad G, Owczarczyk K, et al. Challenges and promises of PET radiomics[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1083-1089. DOI: 10.1016/j.ijrobp.2017.12.268.
|
| [10] |
Shen J, Wen J, Li C, et al. The prognostic value of microvascular invasion in early-intermediate stage hepatocelluar carcinoma: a propensity score matching analysis[J]. BMC Cancer, 2018, 18(1): 278. DOI: 10.1186/s12885-018-4196-x.
|
| [11] |
Chen ZH, Zhang XP, Wang H, et al. Effect of microvascular invasion on the postoperative long-term prognosis of solitary small HCC: a systematic review and meta-analysis[J]. HPB, 2019, 21(8): 935-944. DOI: 10.1016/j.hpb.2019.02.003.
|
| [12] |
Qin X, Zhu J, Tu Z, et al. Contrast-enhanced ultrasound with deep learning with attention mechanisms for predicting microvascular invasion in single hepatocellular carcinoma[J]. Acad Radiol, 2023, 30(Suppl 1): S73-S80. DOI: 10.1016/j.acra.2022.12.005.
|
| [13] |
Yue Q, Zhou Z, Zhang X, et al. Contrast-enhanced CT findings-based model to predict MVI in patients with hepatocellular carcinoma[J]. BMC Gastroenterol, 2022, 22(1): 544. DOI: 10.1186/s12876-022-02586-2.
|
| [14] |
Lu M, Qu Q, Xu L, et al. Prediction for aggressiveness and postoperative recurrence of hepatocellular carcinoma using gadoxetic acid-enhanced magnetic resonance imaging[J]. Acad Radiol, 2023, 30(5): 841-852. DOI: 10.1016/j.acra.2022.12.018.
|
| [15] |
|
| [16] |
|
| [17] |
Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. DOI: 10.1148/radiol.2020191145.
|
| [18] |
Herz C, Fillion-Robin JC, Onken M, et al. dcmqi: an open source library for standardized communication of quantitative image analysis results using DICOM[J]. Cancer Res, 2017, 77(21): e87-e90. DOI: 10.1158/0008-5472.CAN-17-0336.
|
| [19] |
Fedorov A, Clunie D, Ulrich E, et al. DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research[J]. PeerJ, 2016, 4: e2057. DOI: 10.7717/peerj.2057.
|
| [20] |
Sathiya Keerthi S, Lin CJ. Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural Comput, 2003, 15(7): 1667-1689. DOI: 10.1162/089976603321891855.
|
| [21] |
Brown RA, Frayne R. A comparison of texture quantification techniques based on the Fourier and S transforms[J]. Med Phys, 2008, 35(11): 4998-5008. DOI: 10.1118/1.2992051.
|
| [22] |
|
| [23] |
Renzulli M, Brocchi S, Cucchetti A, et al. Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma?[J]. Radiology, 2016, 279(2): 432-442. DOI: 10.1148/radiol.2015150998.
|
| [24] |
Chandarana H, Robinson E, Hajdu CH, et al. Microvascular invasion in hepatocellular carcinoma: is it predictable with pretransplant MRI?[J]. AJR Am J Roentgenol, 2011, 196(5): 1083-1089. DOI: 10.2214/AJR.10.4720.
|
| [25] |
Renzulli M, Mottola M, Coppola F, et al. Automatically extracted machine learning features from preoperative CT to early predict microvascular invasion in HCC: the role of the zone of transition (ZOT)[J]. Cancers, 2022, 14(7): 1816. DOI: 10.3390/cancers14071816.
|
| [26] |
Granata V, Fusco R, Filice S, et al. The current role and future prospectives of functional parameters by diffusion weighted imaging in the assessment of histologic grade of HCC[J]. Infect Agent Cancer, 2018, 13: 23. DOI: 10.1186/s13027-018-0194-5.
|
| [27] |
Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. J Hepatol, 2019, 70(6): 1133-1144. DOI: 10.1016/j.jhep.2019.02.023.
|
| [28] |
Hu F, Zhang Y, Li M, et al. Preoperative prediction of microvascular invasion risk grades in hepatocellular carcinoma based on tumor and peritumor dual-region radiomics signatures[J]. Front Oncol, 2022, 12: 853336. DOI: 10.3389/fonc.2022.853336.
|
| [29] |
Zhou W, Zhang L, Wang K, et al. Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images[J]. J Magn Reson Imaging, 2017, 45(5): 1476-1484. DOI: 10.1002/jmri.25454.
|
| [30] |
Yang L, Gu D, Wei J, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2019, 8(5): 373-386. DOI: 10.1159/000494099.
|
| [31] |
Feng ST, Jia Y, Liao B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI[J]. Eur Radiol, 2019, 29(9): 4648-4659. DOI: 10.1007/s00330-018-5935-8.
|
| [32] |
Roayaie S, Blume IN, Thung SN, et al. A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma[J]. Gastroenterology, 2009, 137(3): 850-855. DOI: 10.1053/j.gastro.2009.06.003.
|
| [33] |
Zhang X, Ruan S, Xiao W, et al. Contrast-enhanced CT radiomics for preoperative evaluation of microvascular invasion in hepatocellular carcinoma: a two-center study[J]. Clin Transl Med, 2020, 10(2): e111. DOI: 10.1002/ctm2.111.
|
| [34] |
Meng XP, Wang YC, Zhou JY, et al. Comparison of MRI and CT for the prediction of microvascular invasion in solitary hepatocellular carcinoma based on a non-radiomics and radiomics method: which imaging modality is better?[J]. J Magn Reson Imaging, 2021, 54(2): 526-536. DOI: 10.1002/jmri.27575.
|