切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 15 ›› Issue (01) : 53 -58. doi: 10.3877/cma.j.issn.2095-3232.2026.01.009

临床研究

基于术前CT影像数据构建肝癌患者生存期Nomogram预测模型
钟文卿, 韩冰()   
  1. 266000 青岛大学附属医院肝胆胰外科
  • 收稿日期:2025-07-10 出版日期:2025-02-10
  • 通信作者: 韩冰
  • 基金资助:
    山东省自然科学基金(ZR2020MH217); 青岛市市南科技计划(2022-4-006-YY)

A Nomogram model based on preoperative CT imaging data for predicting survival of patients with hepatocellular carcinoma

Wenqing Zhong, Bing Han()   

  1. Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
  • Received:2025-07-10 Published:2025-02-10
  • Corresponding author: Bing Han
引用本文:

钟文卿, 韩冰. 基于术前CT影像数据构建肝癌患者生存期Nomogram预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 15(01): 53-58.

Wenqing Zhong, Bing Han. A Nomogram model based on preoperative CT imaging data for predicting survival of patients with hepatocellular carcinoma[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 15(01): 53-58.

目的

基于术前CT影像学数据构建肝细胞癌(肝癌)患者生存期的Nomogram预测模型。

方法

回顾性分析2018年1月至2020年12月在青岛大学附属医院接受手术治疗的243例肝癌患者临床影像学资料。其中男206例,女37例;年龄49~70岁,中位年龄59岁。收集患者术前增强CT多模态数据,利用Pyradiomics技术提取多维度定量放射组学特征,包括肿瘤形态学特征、信号强度分布、纹理特征及信号强度-体积直方图等。将患者划分为训练集(158例)和验证集(85例)。采用Cox单因素和多因素回归分析筛选出患者生存预后的独立影响因素。基于这些因素构建Nomogram预测模型。

结果

基于标准化后的特征数据,最终确定了30个关键的影像学特征。Cox回归分析确定3个独立的关键影像组学特征,包括glcm_MCC、glszm_Zone Percentage、shape_Sphericity。该Cox回归模型训练集的ROC AUC为0.82。基于Cox多因素回归的风险评分将患者分为高风险组和低风险组,Kaplan-Meier生存分析显示训练集低风险组和高风险组生存差异有统计学意义(χ2=7.353,P<0.05)。构建肝癌患者生存预后的Nomogram模型,验证集该模型的AUC为0.78。验证集Nomogram模型高、低风险组生存比较,差异亦有统计学意义(χ2=2.38,P<0.05),进一步验证了Nomogram模型的有效性与可靠性。

结论

本研究基于术前CT影像数据开发的Nomogram模型能有效预测肝癌患者生存期,可以辅助临床医师进行早期预判,提供辅助决策支持。

Objective

To construct a Nomogram model for predicting the survival of patients with hepatocellular carcinoma (HCC) based on preoperative CT imaging data.

Methods

Clinical imaging data of 243 patients with HCC who underwent surgical treatment in the Affiliated Hospital of Qingdao University from January 2018 to December 2020 were retrospectively analyzed. Among them, 206 patients were male and 37 female, aged from 49 to 70 years, with a median age of 59 years. Multi-modal data of preoperative contrast-enhanced CT were collected. Multi-dimensional quantitative radiomic features were extracted by Pyradiomics, including tumor morphological features, signal intensity distribution, texture features and signal intensity-volume histogram, etc. All patient datasets were divided into the training (n=158) and validation sets (n=85). Univariate and multivariate Cox regression analyses were used to screen the independent factors affecting the survival and prognosis of HCC patients. Nomogram model was constructed based on these factors.

Results

Based on the standardized feature data, 30 key imaging features were eventually determined. Cox regression analysis identified three independent key radiomic features including glcm_MCC, glszm_Zone Percentage and shape_Sphericity. The area under the ROC curve (AUC) of the training set in Cox regression model was 0.82. All patients were divided into the high-risk and low-risk groups based on the risk score of multivariate Cox regression analysis. Kaplan-Meier survival analysis showed that the difference in the survival between the low-risk and high-risk groups in the training set was statistically significant (χ2=7.353, P<0.05). A Nomogram model of survival and prognosis of patients with liver cancer was constructed. The AUC of the Nomogram model in the validation set was 0.78. The difference in the survival between the low-risk and high-risk groups in the validation set was statistically significant (χ2=2.38, P<0.05), which further validated the effectiveness and reliability of the Nomogram model.

Conclusions

Nomogram model constructed based on preoperative CT imaging data can effectively predict the survival of HCC patients, which can effectively assist early prediction and provide decision-making support for clinicians.

图1 使用ITK-SNAP工具对一例肝癌患者肝脏CT影像肿瘤区域轮廓标注 注:a、b、c为分别从肝脏CT的不同切面标注
表1 训练集和验证集肝癌患者临床基线资料
表2 肝癌患者预后的影像组学特征因素Cox多因素分析
图2 训练集肝癌生存预后的Cox多因素回归模型ROC曲线
图3 训练集肝癌患者生存高、低风险组Kaplan-Meier曲线
图4 基于影像组学特征构建肝癌生存预后的Nomogram模型
图5 验证集肝癌生存预后Nomogram模型ROC曲线
图6 验证集高、低风险组肝癌患者Kaplan-Meier生存曲线
[1]
赵海潮, 高强. 2022年度肝癌研究及诊疗新进展[J]. 中国癌症杂志, 2023, 33(4): 315-326. DOI: 10.19401/j.cnki.1007-3639.2023.04.002.
[2]
赵沛, 蒋栋铭, 鲜林峰, 等. 2004—2018年中国大陆地区原发性肝癌死亡率分析[J]. 上海预防医学, 2021, 33(10): 881-886. DOI: 10.19428/j.cnki.sjpm.2021.21080.
[3]
Erratum: global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2020, 70(4): 313. DOI: 10.3322/caac.21609.
[4]
Safri F, Nguyen R, Zerehpooshnesfchi S, et al. Heterogeneity of hepatocellular carcinoma: from mechanisms to clinical implications[J]. Cancer Gene Ther, 2024, 31(8): 1105-1112. DOI: 10.1038/s41417-024-00764-w.
[5]
Losic B, Craig AJ, Villacorta-Martin C, et al. Intratumoral heterogeneity and clonal evolution in liver cancer[J]. Nat Commun, 2020, 11: 291. DOI: 10.1038/s41467-019-14050-z.
[6]
Zarębska I, Gzil A, Durślewicz J, et al. The clinical, prognostic and therapeutic significance of liver cancer stem cells and their markers[J]. Clin Res Hepatol Gastroenterol, 2021, 45(3): 101664. DOI: 10.1016/j.clinre.2021.101664.
[7]
Kim J, Choi SJ, Lee SH, et al. Predicting survival using pretreatment CT for patients with hepatocellular carcinoma treated with transarterial chemoembolization: comparison of models using radiomics[J]. AJR Am J Roentgenol, 2018, 211(5): 1026-1034. DOI: 10.2214/AJR.18.19507.
[8]
Chen D, Zhang R, Huang X, et al. MRI-derived radiomics assessing tumor-infiltrating macrophages enable prediction of immune-phenotype, immunotherapy response and survival in glioma[J]. Biomark Res, 2024, 12(1): 14. DOI: 10.1186/s40364-024-00560-6.
[9]
范存庚, 廖瑞滢. 《现代肝癌诊断治疗学》出版: MRI影像组学在混合型肝癌与肝内胆管细胞癌鉴别诊断中的应用[J]. 介入放射学杂志, 2024, 33(11): 1271.
[10]
Siam A, Alsaify AR, Mohammad B, et al. Multimodal deep learning for liver cancer applications: a scoping review[J]. Front Artif Intell, 2023, 6: 1247195. DOI: 10.3389/frai.2023.1247195.
[11]
Tang Y, Zhang T, Zhou X, et al. The preoperative prognostic value of the radiomics nomogram based on CT combined with machine learning in patients with intrahepatic cholangiocarcinoma[J]. World J Surg Oncol, 2021, 19(1): 45. DOI: 10.1186/s12957-021-02162-0.
[12]
Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability[J]. Neuroimage, 2006, 31(3): 1116-1128. DOI: 10.1016/j.neuroimage.2006.01.015.
[13]
马晓辉, 周海春, 梁佳伟, 等. 人工智能时代的放射组学及Pyradiomics工具包在放射组学中的应用[J]. 浙江医学, 2022, 44(8): 887-889, 895. DOI: 10.12056/j.issn.1006-2785.2022.44.8.2020-3422.
[14]
Hartmann K, Sadée CY, Satwah I, et al. Imaging genomics: data fusion in uncovering disease heritability[J]. Trends Mol Med, 2023, 29(2): 141-151. DOI: 10.1016/j.molmed.2022.11.002.
[15]
Kang X, Liu X, Li Y, et al. Development and evaluation of nomograms and risk stratification systems to predict the overall survival and cancer-specific survival of patients with hepatocellular carcinoma[J]. Clin Exp Med, 2024, 24(1): 44. DOI: 10.1007/s10238-024-01296-1.
[16]
陈莉军, 王琳. 影像组学在甲状腺结节定性诊断中的研究进展[J]. 磁共振成像, 2025, 16(2): 165-171. DOI: 10.12015/issn.1674-8034.2025.02.027.
[17]
White SJ, Phua QS, Lu L, et al. Heterogeneity in systematic reviews of medical imaging diagnostic test accuracy studies: a systematic review[J]. JAMA Netw Open, 2024, 7(2): e240649. DOI: 10.1001/jamanetworkopen.2024.0649.
[18]
Huang Y, Zhang H, Ding Q, et al. Comparison of multiple machine learning models for predicting prognosis of pancreatic ductal adenocarcinoma based on contrast-enhanced CT radiomics and clinical features[J]. Front Oncol, 2024, 14: 1419297. DOI: 10.3389/fonc.2024.1419297.
[19]
Suter Y, Knecht U, Valenzuela W, et al. The LUMIERE dataset: longitudinal Glioblastoma MRI with expert RANO evaluation[J]. Sci Data, 2022, 9(1): 768. DOI: 10.1038/s41597-022-01881-7.
[20]
Panayides AS, Amini A, Filipovic ND, et al. AI in medical imaging informatics: current challenges and future directions[J]. IEEE J Biomed Health Inform, 2020, 24(7): 1837-1857. DOI: 10.1109/JBHI.2020.2991043.
[21]
杨玉娥, 李鑫焱, 张文鑫, 等. 基于卷积神经网络以超声影像组学预测新辅助化疗用于乳腺癌效果[J/OL]. 中国医学影像技术, 2025, 41(3): 424-428. DOI: 10.13929/j.issn.1003-3289.2025.03.016.
[22]
陈小萍, 胡维杰, 王婷婷. 肝硬化背景下小肝癌微血管侵犯及复发的CT表现[J]. 肝脏, 2022, 27(10): 1076-1079. DOI: 10.14000/j.cnki.issn.1008-1704.2022.10.001.
[23]
田畅, 陈艾琪, 杜小萌, 等. 基于CT影像组学及临床多因素回归分析预测肝细胞肝癌TACE术后中重度腹痛的模型构建[J]. 中国CT和MRI杂志, 2024, 22(5): 109-112. DOI: 10.3969/j.issn.1672-5131.2024.05.035.
[1] 杨雯林, 吴元魁. 影像组学在胰腺神经内分泌瘤诊疗中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 426-432.
[2] 毛俊, 蔡兆伦, 尹晓南, 沈朝勇, 张波. 影像组学预测模型在胃肠间质瘤诊断及预后中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 421-425.
[3] 李瑞, 陈文浩, 徐镇, 蒋维荣, 李志文, 侯以森, 孟勇. 3D打印解剖模型联合腹腔镜手术视频在腹腔镜肝切除术临床教学的应用研究[J/OL]. 中华普外科手术学杂志(电子版), 2026, 20(01): 63-66.
[4] 梁于勇, 郑丽, 杨俭. PDCD4与原发性肝细胞癌患者肝切除术后疾病进展的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 666-669.
[5] 李瑞芳, 王明帅, 邢念增. 循环肿瘤细胞在膀胱癌诊断和预后中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 705-713.
[6] 吴哲境, 李敬东. ICG荧光成像引导下腹腔镜肝切除术治疗肝癌的安全性和有效性Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 852-859.
[7] 黄少坚, 梁汉标, 李清平, 唐善华, 李青妍, 李芷西, 黄灿, 王小振, 陈灿辉, 王恺, 李川江. 基于影像组学和临床特征构建肝癌新辅助/转化治疗后病理学完全缓解预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 860-867.
[8] 王利皓, 罗世超, 唐强, 尚栋良, 段少博, 卢冰, 李海, 薛飞. 仑伐替尼和PD-1抑制剂预处理联合TACE序贯治疗CNLC分期Ⅲ期肝癌疗效及安全性[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 868-874.
[9] 李健文, 陈莹, 陈羲, 宗晓丹. 钆塞酸二钠增强MRI在高分化小肝癌和不典型增生结节鉴别诊断中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 875-881.
[10] 黄洪军, 黄志强, 林敏杰, 孟兴成, 吴志明, 李江涛. 巨大肝血管瘤腹腔镜下血管瘤剥除术与解剖性肝切除术疗效比较[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 882-887.
[11] 余萱, 贺需旗, 郭光辉, 谭雷, 李凯, 曾庆劲. 新型微波消融系统治疗血管旁与非血管旁肝癌的安全性及疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 888-893.
[12] 段兴福, 唐建中, 孙志为, 陈业盛, 高波, 费振浩. 后腹膜入路腹腔镜微波消融术治疗复发性肝癌的临床疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 919-924.
[13] 朱恒美, 董志涛, 房树恒, 贺丹丹, 张晓丽, 周静, 翟健, 耿利, 杨甲梅. 肝癌肝动脉持续灌注化疗患者卧床时限改变的前瞻性研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 925-930.
[14] 许侨东, 马志延, 冯庚壬, 钟海彬, 刘坚锐, 古松钢. 肝肺多发性原发性癌转化治疗后行腹腔镜肝右前叶切除术一例(附视频)[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 973-976.
[15] 胡斌, 柳林. 食管癌新辅助治疗后CT影像特征变化与术后病理完全缓解率的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 627-634.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?