| [1] |
|
| [2] |
|
| [3] |
Erratum: global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2020, 70(4): 313. DOI: 10.3322/caac.21609.
|
| [4] |
Safri F, Nguyen R, Zerehpooshnesfchi S, et al. Heterogeneity of hepatocellular carcinoma: from mechanisms to clinical implications[J]. Cancer Gene Ther, 2024, 31(8): 1105-1112. DOI: 10.1038/s41417-024-00764-w.
|
| [5] |
Losic B, Craig AJ, Villacorta-Martin C, et al. Intratumoral heterogeneity and clonal evolution in liver cancer[J]. Nat Commun, 2020, 11: 291. DOI: 10.1038/s41467-019-14050-z.
|
| [6] |
Zarębska I, Gzil A, Durślewicz J, et al. The clinical, prognostic and therapeutic significance of liver cancer stem cells and their markers[J]. Clin Res Hepatol Gastroenterol, 2021, 45(3): 101664. DOI: 10.1016/j.clinre.2021.101664.
|
| [7] |
Kim J, Choi SJ, Lee SH, et al. Predicting survival using pretreatment CT for patients with hepatocellular carcinoma treated with transarterial chemoembolization: comparison of models using radiomics[J]. AJR Am J Roentgenol, 2018, 211(5): 1026-1034. DOI: 10.2214/AJR.18.19507.
|
| [8] |
Chen D, Zhang R, Huang X, et al. MRI-derived radiomics assessing tumor-infiltrating macrophages enable prediction of immune-phenotype, immunotherapy response and survival in glioma[J]. Biomark Res, 2024, 12(1): 14. DOI: 10.1186/s40364-024-00560-6.
|
| [9] |
范存庚, 廖瑞滢. 《现代肝癌诊断治疗学》出版: MRI影像组学在混合型肝癌与肝内胆管细胞癌鉴别诊断中的应用[J]. 介入放射学杂志, 2024, 33(11): 1271.
|
| [10] |
Siam A, Alsaify AR, Mohammad B, et al. Multimodal deep learning for liver cancer applications: a scoping review[J]. Front Artif Intell, 2023, 6: 1247195. DOI: 10.3389/frai.2023.1247195.
|
| [11] |
Tang Y, Zhang T, Zhou X, et al. The preoperative prognostic value of the radiomics nomogram based on CT combined with machine learning in patients with intrahepatic cholangiocarcinoma[J]. World J Surg Oncol, 2021, 19(1): 45. DOI: 10.1186/s12957-021-02162-0.
|
| [12] |
Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability[J]. Neuroimage, 2006, 31(3): 1116-1128. DOI: 10.1016/j.neuroimage.2006.01.015.
|
| [13] |
|
| [14] |
Hartmann K, Sadée CY, Satwah I, et al. Imaging genomics: data fusion in uncovering disease heritability[J]. Trends Mol Med, 2023, 29(2): 141-151. DOI: 10.1016/j.molmed.2022.11.002.
|
| [15] |
Kang X, Liu X, Li Y, et al. Development and evaluation of nomograms and risk stratification systems to predict the overall survival and cancer-specific survival of patients with hepatocellular carcinoma[J]. Clin Exp Med, 2024, 24(1): 44. DOI: 10.1007/s10238-024-01296-1.
|
| [16] |
|
| [17] |
White SJ, Phua QS, Lu L, et al. Heterogeneity in systematic reviews of medical imaging diagnostic test accuracy studies: a systematic review[J]. JAMA Netw Open, 2024, 7(2): e240649. DOI: 10.1001/jamanetworkopen.2024.0649.
|
| [18] |
Huang Y, Zhang H, Ding Q, et al. Comparison of multiple machine learning models for predicting prognosis of pancreatic ductal adenocarcinoma based on contrast-enhanced CT radiomics and clinical features[J]. Front Oncol, 2024, 14: 1419297. DOI: 10.3389/fonc.2024.1419297.
|
| [19] |
Suter Y, Knecht U, Valenzuela W, et al. The LUMIERE dataset: longitudinal Glioblastoma MRI with expert RANO evaluation[J]. Sci Data, 2022, 9(1): 768. DOI: 10.1038/s41597-022-01881-7.
|
| [20] |
Panayides AS, Amini A, Filipovic ND, et al. AI in medical imaging informatics: current challenges and future directions[J]. IEEE J Biomed Health Inform, 2020, 24(7): 1837-1857. DOI: 10.1109/JBHI.2020.2991043.
|
| [21] |
|
| [22] |
|
| [23] |
|