切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2015, Vol. 04 ›› Issue (04) : 246 -249. doi: 10.3877/cma.j.issn.2095-3232.2015.04.013

所属专题: 文献

基础研究

siRNA沉默ENAH基因对肝癌细胞生长的抑制作用
黄群爱1, 胡昆鹏2,(), 刘波2, 姚志成2, 熊志勇3   
  1. 1. 510630 广州,中山大学附属第三医院甲状腺乳腺外科
    2. 510530 广州,中山大学附属第三医院岭南医院普通外科
    3. 510630 广州,中山大学附属第三医院肝胆外科
  • 收稿日期:2015-06-12 出版日期:2015-08-10
  • 通信作者: 胡昆鹏
  • 基金资助:
    教育部博士点基金新教师类(20110171120089)

Inhibition of ENAH gene silenced by siRNA on growth of liver cancer cell

Qunai Huang1, Kunpeng Hu2,(), Bo Liu2, Zhicheng Yao2, Zhiyong Xiong3   

  1. 1. Department of Thyroid Breast Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
    2. Department of General Surgery, Lingnan Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510530, China
    3. Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2015-06-12 Published:2015-08-10
  • Corresponding author: Kunpeng Hu
  • About author:
    Corresponding author: Hu Kunpeng, Email:
引用本文:

黄群爱, 胡昆鹏, 刘波, 姚志成, 熊志勇. siRNA沉默ENAH基因对肝癌细胞生长的抑制作用[J]. 中华肝脏外科手术学电子杂志, 2015, 04(04): 246-249.

Qunai Huang, Kunpeng Hu, Bo Liu, Zhicheng Yao, Zhiyong Xiong. Inhibition of ENAH gene silenced by siRNA on growth of liver cancer cell[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2015, 04(04): 246-249.

目的

探讨siRNA沉默ENAH基因对肝癌细胞生长的抑制作用。

方法

采用脂质体Lipofectamine 2000将ENAH-siRNA及control-siRNA转染至人肝癌细胞HCCLM3,分别设为ENAH-siRNA组和control-siRNA组。采用Western blot检测ENAH蛋白表达,采用裸鼠成瘤实验观察肝癌细胞致瘤能力。记录肿瘤体积,绘制生长曲线,进行生存分析。两组实验数据比较采用t检验,生存分析采用Kaplan-Meier法和Log-rank检验。

结果

ENAH-siRNA组细胞ENAH蛋白表达明显弱于control-siRNA组。ENAH-siRNA组裸鼠接种后实体肿瘤形成时间为(24±3)d,明显长于control-siRNA组的(8±2)d(t=12.55,P<0.05)。ENAH-siRNA组裸鼠中位生存时间为64(48~81)d,control-siRNA组为34(21~48)d,两组总体生存率比较差异有统计学意义(χ2=14.33,P<0.05)。

结论

siRNA沉默ENAH基因可明显减弱肝癌细胞的致瘤能力,抑制肿瘤生长。

Objective

To investigate the inhibition of ENAH gene silenced by siRNA on the growth of liver cancer cell.

Methods

ENAH-siRNA and control-siRNA were transfected to human liver cancer cell HCCLM3 using liposome Lipofectamine 2000 and ENAH-siRNA group and control-siRNA group were established. The expression of ENAH protein was detected by Western blot. Tumorigenic ability of the liver cancer cell was observed through nude mice tumorigenicity assay. Tumor volume was recorded, growth curve was drawn and survival analysis was conducted. The experimental data of two groups were compared using t test, and the survival analysis was conducted using Kaplan-Meier method and Log-rank test.

Results

The expression of ENAH protein in ENAH-siRNA group was significantly less than that in control-siRNA group. The formation time of solid tumor after inoculation in nude mice in ENAH-siRNA group was (24±3) d, which was significantly longer than (8±2) d in control-siRNA group (t=12.55, P<0.05). The median survival time of the nude mice was 64 (48~81) d in ENAH-siRNA group and was 34 (21~48) d in control-siRNA group. There was significant difference in the overall survival rate between two groups (χ2=14.33, P<0.05).

Conclusion

ENAH gene silenced by siRNA may obviously weaken the tumorigenic ability of liver cancer cell and inhibit the growth of tumor.

图1 Western blot检测ENAH-siRNA组和control-siRNA组细胞ENAH蛋白表达
[1]
郭宇,陈规划.肝细胞肝癌合并肝静脉、下腔静脉及右心房癌栓的诊断与治疗[J/CD].中华肝脏外科手术学电子杂志,2013, 2(1):53-55.
[2]
安玉玲,张婷婷,蔡常洁.西罗莫司用于治疗肝癌肝移植术后肿瘤复发患者的疗效分析[J].器官移植,2011, 2(2):73-76.
[3]
范上达,邱宗祥,潘冬平.肝癌的综合治疗[J].中华消化外科杂志,2011, 10(4):241-246.
[4]
Loya CM, Mcneill EM, Bao H, et al. miR-8 controls synapse structure by repression of the actin regulator enabled[J]. Development, 2014, 141(9):1864-1874.
[5]
Winkelman JD, Bilancia CG, Peifer M, et al. Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin[J]. Proc Natl Acad Sci U S A, 2014, 111(11):4121-4126.
[6]
Agarwal S, Gertler FB, Balsamo M, et al. Quantitative assessment of invasive mena isoforms (Menacalc) as an independent prognostic marker in breast cancer[J]. Breast Cancer Res, 2012, 14(5):R124.
[7]
Rhim AD, Mirek ET, Aiello NM, et al. EMT and dissemination precede pancreatic tumor formation[J]. Cell, 2012, 148(1/2):349-361.
[8]
Bessède E, Staedel C, Acuña Amador LA, et al. Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes[J]. Oncogene, 2014, 33(32):4123-4131.
[9]
Chen XJ, Squarr AJ, Stephan R, et al. Ena/VASP proteins cooperate with the WAVE complex to regulate the actin cytoskeleton[J]. Dev Cell, 2014, 30(5):569-584.
[10]
Lim J, Thiery JP. Epithelial-mesenchymal transitions: insights from development[J]. Development, 2012, 139(19):3471-3486.
[11]
Gurzu S, Turdean S, Kovecsi A, et al. Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: an update[J]. World J Clin Cases, 2015, 3(5):393-404.
[12]
Jain P, Spaeder MC, Donofrio MT, et al. Detection of alpha II-spectrin breakdown products in the serum of neonates with congenital heart disease[J]. Pediatr Crit Care Med, 2014, 15(3):229-235.
[13]
Huang T, Chen Z, Fang L. Curcumin inhibits LPS-induced EMT through downregulation of NF-κB-Snail signaling in breast cancer cells[J]. Oncol Rep, 2013, 29(1):117-124.
[14]
Chen Y, Yao F, Chen S, et al. Endogenous BNP attenuates cardiomyocyte hypertrophy induced by Ang II via p38 MAPK/Smad signaling[J]. Pharmazie, 2014, 69(11):833-837.
[15]
Emami H, Vucic E, Subramanian S, et al. The effect of BMS-582949, a P38 mitogen-activated protein kinase (P38 MAPK) inhibitor on arterial inflammation: a multicenter FDG-PET trial[J]. Atherosclerosis, 2015, 240(2):490-496.
[16]
Gao D, Vahdat LT, Wong S, et al. Microenvironmental regulation of epithelial-mesenchymal transitions in cancer[J]. Cancer Res, 2012, 72(19):4883-4889.
[17]
Hu K, Wang J, Yao Z, et al. Expression of cytoskeleton regulatory protein Mena in human hepatocellular carcinoma and its prognostic significance[J]. Med Oncol, 2014, 31(5):939.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[3] 陈忠垚, 陈胜灯, 李秋. 不同手术时机对原发性肝癌自发破裂出血患者远期预后的影响[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 518-521.
[4] 孟令展, 朱震宇. 达芬奇机器人辅助肝中叶切除术[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 373-373.
[5] 杜锡林, 谭凯, 贺小军, 白亮亮, 赵瑶瑶. 肝细胞癌转化治疗方式[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 597-601.
[6] 唐灿, 李向阳, 秦浩然, 李婧, 王天云, 柯阳, 朱红. 原发性肝脏神经内分泌肿瘤单中心12例诊治与疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 674-680.
[7] 崔佳琪, 吴迪, 陈海艳, 周惠敏, 顾元龙, 周光文, 杨军. TACE术后并发肝脓肿的临床诊治分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 688-693.
[8] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[9] 顾娇娇, 邹燕, 陈奕辰, 黄师菊, 张慧玲, 林楠. 基于简易营养评价精法评估肝癌患者出院后营养状况及其影响因素[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 534-539.
[10] 孟令展, 李虎, 俞鹏, 于燕宾, 曹李, 翟伟, 高远, 邵艳玲, 严锦, 朱震宇. ICG荧光染色在肝癌腹腔镜解剖性肝切除术中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 557-561.
[11] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[12] 何传超, 肖治宇. 晚期肝癌综合治疗模式与策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 486-489.
[13] 赫嵘, 贾哲, 张珂, 李代京, 张萌, 蒋力. 基于PSM分析腹腔镜肝切除联合Hassab术治疗合并门静脉高压症肝癌疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 376-383.
[14] 杨发才, 游川, 雷正清, 李伟男, 段安琪, 邱应和, 李敬东, 程张军. 肿瘤负荷评分联合淋巴结分期对肝内胆管细胞癌患者术后生存预测价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 389-394.
[15] 李映安, 晋云, 储心昀, 胡苹苹, 王峻峰. 混合现实技术在腹腔镜肝切除术中导航的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 401-406.
阅读次数
全文


摘要