切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2019, Vol. 08 ›› Issue (03) : 260 -264. doi: 10.3877/cma.j.issn.2095-3232.2019.03.019

所属专题: 文献

基础研究

131Ⅰ标记的肝癌核酸适配子在荷瘤裸鼠体内生物分布及显像
杨敏1, 黄文山1, 查悦明1, 张桂雄1, 许杰华1,()   
  1. 1. 510630 广州,中山大学附属第三医院核医学科
  • 收稿日期:2019-02-28 出版日期:2019-06-10
  • 通信作者: 许杰华
  • 基金资助:
    国家自然科学基金(81101866); 教育部归国留学人员科研启动基金(教外司留[2015]1098号); 广东省自然科学基金(2018A030313200); 广东省科技计划项目(2014A020212581)

Biodistribution and imaging of 131I-labelled hepatoma aptamer in tumor-bearing nude mice

Min Yang1, Wenshan Huang1, Yueming Zha1, Guixiong Zhang1, Jiehua Xu1,()   

  1. 1. Department of Nuclear Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2019-02-28 Published:2019-06-10
  • Corresponding author: Jiehua Xu
  • About author:
    Corresponding author: Xu Jiehua, Email:
引用本文:

杨敏, 黄文山, 查悦明, 张桂雄, 许杰华. 131Ⅰ标记的肝癌核酸适配子在荷瘤裸鼠体内生物分布及显像[J]. 中华肝脏外科手术学电子杂志, 2019, 08(03): 260-264.

Min Yang, Wenshan Huang, Yueming Zha, Guixiong Zhang, Jiehua Xu. Biodistribution and imaging of 131I-labelled hepatoma aptamer in tumor-bearing nude mice[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2019, 08(03): 260-264.

目的

探讨131Ⅰ标记肝癌核酸适配子JHIT2(131Ⅰ-JHIT2)作为肝癌靶向显像新型分子探针的可行性。

方法

采用Ⅰodogen法制备131Ⅰ-JHIT2,纸层析法测标记率及放射化学纯度(放化纯度),检测其在不同溶液中不同时间的放化纯度。采用γ计数器分别测定131I-JHIT2与人肝癌细胞HepG2、正常肝细胞L02结合后细胞的放射性计数。HepG2荷瘤裸鼠尾静脉注射约0.74 MBq131Ⅰ-JHIT2后不同时间处死,测定并计算各脏器每克组织放射性摄取值、肿瘤/肌肉(T/M)放射性比值。荷瘤裸鼠尾静脉注射约9.25 MBq 131Ⅰ-JHIT2后单光子发射计算机断层成像术(SPECT)-CT显像,观察并计算不同时间肿瘤/非肿瘤(T/NT)比值。两种细胞放射性计数比较采用t检验。

结果

131Ⅰ-JHIT2标记率为(67.8±0.5)%,纯化后放化纯度为(91.4±1.1)%。室温下131Ⅰ-JHIT2在PBS、生理盐水24 h的放化纯度均>80%。131Ⅰ-JHIT2分别与两种细胞结合后,HepG2细胞的放射性计数为(415±9)CPM,明显高于L02细胞的(288±7)CPM(t=15.3,P<0.05)。尾静脉注射131Ⅰ-JHIT2后,荷瘤鼠体内30 min、2 h肿瘤部位每克组织放射性摄取值分别为(4.17±2.83)、(2.22±0.64)%ID/g,T/M比值相应为2.01±1.15、2.07±0.82。SPECT-CT显像示,荷瘤裸鼠注射131Ⅰ-JHIT2后30 min,肿瘤部位可见放射性摄取,T/NT比值为2.63;2 h放射性减低,T/NT比值为1.82。

结论

131Ⅰ-JHIT2探针在体外稳定性较好,对体外HepG2细胞及HepG2细胞荷瘤裸鼠模型具有一定靶向作用,为肝癌靶向核素诊疗奠定一定的基础。

Objective

To investigate the feasibility of 131I-labeled hepatoma aptamer JHIT2 (131I-JHIT2) as a novel molecular probe for hepatoma-targeted imaging.

Methods

The 131I-JHIT2 was prepared by Iodogen method. The labeling rate and radiochemical purity were measured by paper chromatography. The radiochemical purity of 131I-JHIT2 was detected in different solutions at different time points. The radioactivity count of 131I-JHIT2 after combining with human hepatoma HepG2 and normal liver cell L02 was measured by gamma counter. The HepG2 tumor-bearing nude mice were sacrificed at different time points after caudal venous injection of approximately 0.74 MBq 131I-JHIT2. The percentage of radioactivity uptake value and tumor/muscle (T/M) radioactivity ratio per 1 g tissues of each organ were measured and calculated. Single-photon emission computed tomography (SPECT)-CT imaging was performed after caudal venous injection of approximately 9.25 MBq 131I-JHIT2 in tumor-bearing nude mice. The tumor/non-tumor (T/NT) ratio was observed and measured at different time points. The radioactive count was statistically compared between two types of cells by t test.

Results

The labeling rate of 131I-JHIT2 was (67.8±0.5)%, and the radiochemical purity after purification was (91.4±1.1)%. The radiochemical purity of 131I-JHIT2 in PBS or normal saline at room temperature for 24 h was both above 80%. After 131I-JHIT2 combining with two types of cells, the radioactive count of HepG2 cells was (415±9) CPM, significantly higher than (288±7) CPM of L02 cells (t=15.3, P<0.05). At 30 min and 2 h after caudal venous injection of 131I-JHIT2, the percentage of radioactivity uptake value per 1 g tumor tissue in tumor-bearing mice was (4.17±2.83) and (2.22±0.64) %ID/g, and the T/M ratio was 2.01±1.15 and 2.07±0.82. SPECT-CT imaging demonstrated that radioactive uptake was observed at the tumor site in tumor-bearing nude mice and the T/NT ratio was 2.63 at 30 min after 131I-JHIT2 injection. The radioactivity decreased at 2 h, and the T/NT ratio was 1.82.

Conclusions

131I-JHIT2 probe possesses relatively high stability in vitro, and has certain targeting capacity towards HepG2 cells in vitro and HepG2 tumor-bearing nude mouse model, which lays certain foundation for the targeted radionuclide diagnosis and treatment of liver cancer.

表1 注射131I-JHIT2后在HepG2荷瘤裸鼠体内的生物分布(%ID/g,±s
图1 荷瘤小鼠尾静脉注射131Ⅰ-JHIT2后显像图
[1]
Lee EC,Kim SH,Park H, et al. Survival analysis after liver resection for hepatocellular carcinoma: a consecutive cohort of 1002 patients[J]. J Gastroenterol Hepatol, 2017, 32(5):1055-1063.
[2]
Ma J,Wang JH. 131I-labeled-metuximab plus transarterial chemoembolization in combination therapy for unresectable epatocellular carcinoma: results from a multicenter phase IV clinical study[J]. Asian Pac J Cancer Prev, 2015, 16(17):7441-7447.
[3]
穆传杰,韩佩珍.寡核苷酸适配子在核医学中的应用[J].中华核医学杂志,2006, 26(4):246-249.
[4]
Ellington AD,Szostak JW. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287):818-822.
[5]
Tuerk C,Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968):505-510.
[6]
Perkins AC,Missailidis S. Radiolabelled aptamers for tumour imaging and therapy[J]. Q J Nucl Med Mol Imaging, 2007, 51(4): 292-296.
[7]
Jacobson O,Weiss ID,Wang L, et al. 18F-labeled single-stranded DNA aptamer for PET imaging of protein tyrosine kinase-7 expression[J]. J Nucl Med, 2015, 56(11):1780-1785.
[8]
Correa CR,de Barros AL,Ferreira Cde A, et al. Aptamers directly radiolabeled with technetium-99m as a potential agent capable of identifying carcinoembryonic antigen (CEA) in tumor cells T84[J]. Bioorg Med Chem Lett, 2014, 24(8):1998-2001.
[9]
Wu X,Liang H,Tan Y, et al. Cell-SELEX aptamer for highly specific radionuclide molecular imaging of glioblastoma in vivo[J]. PLoS One, 2014, 9(6):e90752.
[10]
Li J,Zheng H,Bates PJ, et al. Aptamer imaging with Cu-64 labeled AS1411: preliminary assessment in lung cancer[J]. Nucl Med Biol, 2014, 41(2):179-185.
[11]
Bandekar A,Zhu C,Jindal R, et al. Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular alpha-particle therapy of cancer[J]. J Nucl Med, 2014, 55(1): 107-114.
[12]
Xu J,Teng IT,Zhang L, et al. Molecular recognition of human liver cancer cells using DNA aptamers generated via cell-SELEX[J]. PLoS One, 2015, 10(5):e0125863.
[13]
Noaparast Z,Hosseinimehr SJ,Piramoon M, et al. Tumor targeting with a (99m)Tc-labeled AS1411 aptamer in prostate tumor cells[J]. J Drug Target, 2015, 23(6):497-505.
[14]
Javier DJ,Nitin N,Levy M, et al. Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging[J]. Bioconjug Chem, 2008, 19(6):1309-1312.
[15]
Massoud TF,Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light[J]. Genes Dev, 2003, 17(5):545-580.
[16]
Xu J. Stability of radioiodine-131 labeled single-stranded DNA aptamers of liver cancer and preliminary SPECT imagings[J]. J Nucl Med, 2016, 57(2):1186.
[17]
刘炳辰,岳井银,穆传杰. 碘标记c-myc反义寡核苷酸乳腺癌显像的实验研究[J]. 中华核医学杂志,2000,20(1):33-34.
[18]
沈晶,王荣福,张春丽,等. 放射性碘标记反义寡核苷酸在荷人淋巴瘤裸鼠中的分布及显像研究[J]. 北京大学学报(医学版), 2004, 36(6):655-659.
[19]
邱峰,王荣福,张春丽,等.125I标记反义寡核苷酸及其识别淋巴瘤细胞的实验研究[J].中华核医学杂志,2003, 23(2):69-71.
[20]
刘生,刘长征,梁碧玲,等.碘标记bcl-2反义寡核苷酸的研究及其稳定性与生物分布的评价[J].核技术,2004, 27(5):365-369.
[1] 王兴, 张峰伟. 腹腔镜肝切除联合断面射频消融治疗伴微血管侵犯肝细胞癌的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 580-583.
[2] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[3] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[4] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[5] 张文华, 陶焠, 胡添松. 不同部位外生型肝癌临床病理特点及其对术后肝内复发和预后影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 651-655.
[6] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[7] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[8] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[9] 叶文涛, 吴忠均, 廖锐. 癌旁组织ALOX15表达与肝癌根治性切除术后预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 708-712.
[10] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[11] 杜锡林, 谭凯, 贺小军, 白亮亮, 赵瑶瑶. 肝细胞癌转化治疗方式[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 597-601.
[12] 何传超, 肖治宇. 晚期肝癌综合治疗模式与策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 486-489.
[13] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[14] 王峰杰, 王礼光, 廖珊, 刘颖, 符荣党, 陈焕伟. 腹腔镜右半肝切除术治疗肝癌的安全性与疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 517-522.
[15] 张海涛, 贾哲, 马超, 张其坤, 武聚山, 郭庆良, 曾道炳, 栗光明, 王孟龙. 手术切除与射频消融治疗血管周围型单发小肝癌临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 523-527.
阅读次数
全文


摘要