切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2022, Vol. 11 ›› Issue (03) : 315 -319. doi: 10.3877/cma.j.issn.2095-3232.2022.03.020

基础研究

小鼠VETC(+)肝癌模型构建及索拉非尼对VETC结构的影响
熊培尧1, 唐雨豪1, 杨子良1, 朱应钦1, 王骏成1, 徐立1,()   
  1. 1. 510060 广州,中山大学肿瘤防治中心肝脏外科
  • 收稿日期:2022-03-08 出版日期:2022-06-10
  • 通信作者: 徐立
  • 基金资助:
    国家自然科学基金(81772589)

Establishment of mouse model with VETC(+) liver cancer and effect of sorafenib on VETC structure

Peiyao Xiong1, Yuhao Tang1, Ziliang Yang1, Yingqin Zhu1, Juncheng Wang1, Li Xu1,()   

  1. 1. Department of Hepatic Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
  • Received:2022-03-08 Published:2022-06-10
  • Corresponding author: Li Xu
引用本文:

熊培尧, 唐雨豪, 杨子良, 朱应钦, 王骏成, 徐立. 小鼠VETC(+)肝癌模型构建及索拉非尼对VETC结构的影响[J]. 中华肝脏外科手术学电子杂志, 2022, 11(03): 315-319.

Peiyao Xiong, Yuhao Tang, Ziliang Yang, Yingqin Zhu, Juncheng Wang, Li Xu. Establishment of mouse model with VETC(+) liver cancer and effect of sorafenib on VETC structure[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2022, 11(03): 315-319.

目的

构建具有肿瘤包绕型血管(VETC)的小鼠肝细胞癌(肝癌)模型,探讨索拉非尼对VETC(+)肝癌的影响。

方法

将49只C57小鼠随机分为预防组(15只)、治疗组(15只)和对照组(19只)。预防组小鼠肝包膜下接种HEP1-6肝癌细胞(5×105/只),2 d后开始连续索拉非尼溶液灌胃(25 mg/kg,每日一次);治疗组于接种后10 d开始连续予索拉非尼溶液灌胃(50 mg/kg,每日一次);对照组以相同体积的DMSO灌胃,于接种后5、10、15、20、23、27 d分批处死小鼠,肿瘤组织石蜡包埋,切片行CD34及HE染色,观察小鼠体重及不良反应,记录成瘤情况、肿瘤最大径等。肿瘤最大径及VETC环数等比较采用Kruskal-Wallis检验。

结果

各组小鼠均顺利成瘤,接种后20 d对照组2只小鼠肝内可见转移灶,接种后23 d对照组1只小鼠死于肿瘤进展。治疗组与预防组均未观察到明显肝内转移,小鼠可见脱屑,无明显厌食、腹泻等不良反应,体重无明显变化,饲养笼干燥,无死亡。预防组接种后5、10、15、20、23 d肿瘤最大径均明显小于对照组(H=-4.355,-3.857,-6.000,-6.250,-6.167;P<0.05);接种后15 d,治疗组肿瘤最大径亦明显小于对照组(H=-5.125,P<0.05)。接种后5 d,对照组小鼠肝肿瘤中均可观察到明显的VETC结构;接种后15 d VETC环数较5 d明显减少(H=-3.857,P<0.05),且肿瘤内部均出现大片坏死灶;接种后23 d VETC环数较15 d明显增多(H=4.582,P<0.05)。预防组接种5~23 d VETC形成明显被抑制;5、10、20 d VETC环数均明显少于对照组(H=-3.971,-4.355,-6.369;P<0.05)。

结论

本研究成功构建小鼠VETC(+)肝癌模型。索拉非尼可有效降低小鼠肝癌的肿瘤负荷,破坏VETC结构并抑制其形成,预防组疗效尤为显著。

Objective

To establish a mouse model of hepatocellular carcinoma (HCC) with vessels encapsulating tumor clusters (VETC) and to evaluate the effect of sorafenib on VETC(+) HCC.

Methods

49 C57 mice were randomly divided into the prevention (n=15), treatment (n=15) and control groups (n=19). In the prevention group, HEP1-6 HCC cells were inoculated under the liver capsule with a dosage of 5×105 cells per mouse, and after 2 d, sorafenib solution was continuously administered by gavage (25 mg/kg, once daily). In the treatment group, sorafenib solution was continuously given by gavage (50 mg/kg, once daily) at 10 d after inoculation. In the control group, an equivalent amount of DMSO was given by gavage. Mice were sacrificed at 5, 10, 15, 20, 23 and 27 d after inoculation, respectively. The tumor tissues were embedded in paraffin and sliced up for CD34 and HE staining. The weight and adverse reactions of mice were observed. The tumor formation and maximum tumor diameter were recorded. The maximum tumor diameter and number of VETC rings were compared by Kruskal-Wallis test.

Results

All the mice in the groups successfully developed tumors. At 20 d after inoculation, 2 mice had intraheptic metastatic lesions in the control group, and 1 mouse died of tumor progression at 23 d after inoculation. No evident intrahepatic metastasis was observed in the treatment and prevention groups. Desquamation was observed in the mice. No obvious adverse reactions, such as anorexia and diarrhea, were seen. No significant change in weight was noted. The mouse cage was dry and no mouse died. In the prevention group, the maximum tumor diameter was significantly smaller than those in the control group at 5, 10, 15, 20 and 23 d after inoculation (H=-4.355, -3.857, -6.000, -6.250, -6.167; P<0.05). At 15 d after inoculation, the maximum tumor diameter in the treatment group was significantly smaller than that in the control group (H=-5.125, P<0.05). At 5 d after inoculation, evident VETC structure could be observed in mouse liver tumors in the control group. At 15 d after inoculation, the number of VETC rings was significantly lower compared with that at 5 d (H=-3.857, P<0.05), and a large quantity of necrotic foci were observed in the tumors. At 23 d after inoculation, the number of VETC rings was significantly larger than that at 15 d (H=4.582, P<0.05). In the prevention group, the formation of VETC was significantly inhibited at 5-23 d after inoculation, the number of VETC rings at 5, 10 and 20 d was significantly less than those in the control group (H=-3.971, -4.355, -6.369; P<0.05).

Conclusions

The mouse model of VETC(+) HCC is successfully established in this study. Sorafenib can effectively reduce the tumor load, destroy the VETC structure and suppress the formation of VETC in HCC mouse models, especially in the prevention group.

图1 小鼠肝癌组织CD34染色观察VETC(免疫组化法 ×200)注:a为肿瘤细胞簇形成完整环形包绕的血管环(箭头所示);b为环形不完整,但内皮细胞包绕肿瘤细胞簇大于180°(箭头所示);VETC为肿瘤包绕型血管
表1 不同组别肝癌细胞接种后各时间点处死小鼠的肿瘤最大径(cm)
表2 不同组别肝癌细胞接种后各时间点处死小鼠肿瘤VETC环数(个)
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin2021, 71(3):209-249.
[2]
Grazi GL, Ercolani G, Pierangeli F, et al. Improved results of liver resection for hepatocellular carcinoma on cirrhosis give the procedure added value[J]. Ann Surg, 2001, 234(1):71-78.
[3]
Zimmerman MA, Ghobrial RM, Tong MJ, et al. Recurrence of hepatocellular carcinoma following liver transplantation: a review of preoperative and postoperative prognostic indicators[J]. Arch Surg, 2008, 143(2):182-188.
[4]
Erstad DJ, Tanabe KK. Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma[J]. Ann Surg Oncol, 2019, 26(5):1474-1493.
[5]
Fang JH, Zhou HC, Zhang C, et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner[J]. Hepatology, 2015, 62(2):452-465.
[6]
Zhou HC, Fang JH, Shang LR, et al. MicroRNAs miR-125b and miR-100 suppress metastasis of hepatocellular carcinoma by disrupting the formation of vessels that encapsulate tumour clusters[J]. J Pathol, 2016, 240(4):450-460.
[7]
Lin WP, Xing KL, Fu JC, et al. Development and validation of a model including distinct vascular patterns to estimate survival in hepatocellular carcinoma[J]. JAMA Netw Open, 2021, 4(9):e2125055.
[8]
Ding T, Xu J, Zhang Y, et al. Endothelium-coated tumor clusters are associated with poor prognosis and micrometastasis of hepatocellular carcinoma after resection[J]. Cancer, 2011, 117(21):4878-4889.
[9]
Woo HY, Rhee H, Yoo JE, et al. Lung and lymph node metastases from hepatocellular carcinoma: comparison of pathological aspects[J]. Liver Int, 2022, 42(1):199-209.
[10]
Renne SL, Woo HY, Allegra S, et al. Vessels encapsulating tumor clusters (VETC) is a powerful predictor of aggressive hepatocellular carcinoma[J]. Hepatology, 2020, 71(1):183-195.
[11]
Rudalska R, Dauch D, Longerich T, et al. In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer[J]. Nat Med, 2014, 20(10):1138-1146.
[12]
Altaf S, Saleem F, Sher AA, et al. Potential therapeutic strategies to combat HCC[J]. Curr Mol Pharmacol, 2022, DOI: 10.2174/1874467215666220103111009[Epub ahead of print].
[13]
Fang JH, Xu L, Shang LR, et al. Vessels that encapsulate tumor clusters (VETC) pattern is a predictor of sorafenib benefit in patients with hepatocellular carcinoma[J]. Hepatology, 2019, 70(3):824-839.
[14]
Abdelgalil AA, Alkahtani HM, Al-Jenoobi FI. Sorafenib[J]. Profiles Drug Subst Excip Relat Methodol, 2019, 44:239-266.
[15]
Zhou HC, Liu CX, Pan WD, et al. Dual and opposing roles of the androgen receptor in VETC-dependent and invasion-dependent metastasis of hepatocellular carcinoma[J]. J Hepatol, 2021, 75(4):900-911.
[16]
Chen ZY, Guo ZX, Lu LH, et al. The predictive value of vessels encapsulating tumor clusters in treatment optimization for recurrent early-stage hepatocellular carcinoma[J]. Cancer Med, 2021, 10(16):5466-5474.
[17]
Fan Y, Yu Y, Wang X, et al. Texture analysis based on Gd-EOB-DTPA-enhanced MRI for identifying vessels encapsulating tumor clusters (VETC)-positive hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2021(8):349-359.
[18]
蓝春勇, 凌冰, 郭文文, 等. VETC(+)肝癌内皮细胞中波形蛋白的表达及其与超声造影表现的关系[J]. 中华肿瘤杂志, 2018, 40(2): 105-109.
[19]
Feng Z, Li H, Zhao H, et al. Preoperative CT for characterization of aggressive macrotrabecular-massive subtype and vessels that encapsulate tumor clusters pattern in hepatocellular carcinoma[J]. Radiology, 2021, 300(1):219-229.
[20]
Xu J, Liang J, Meng YM, et al. Vascular CXCR4 expression promotes vessel sprouting and sensitivity to sorafenib treatment in hepatocellular carcinoma[J]. Clin Cancer Res, 2017, 23(15):4482-4492.
[1] 杜锡林, 谭凯, 贺小军, 白亮亮, 赵瑶瑶. 肝细胞癌转化治疗方式[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 597-601.
[2] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[3] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[4] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[5] 张文华, 陶焠, 胡添松. 不同部位外生型肝癌临床病理特点及其对术后肝内复发和预后影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 651-655.
[6] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[7] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[8] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[9] 叶文涛, 吴忠均, 廖锐. 癌旁组织ALOX15表达与肝癌根治性切除术后预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 708-712.
[10] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[11] 王峰杰, 王礼光, 廖珊, 刘颖, 符荣党, 陈焕伟. 腹腔镜右半肝切除术治疗肝癌的安全性与疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 517-522.
[12] 张海涛, 贾哲, 马超, 张其坤, 武聚山, 郭庆良, 曾道炳, 栗光明, 王孟龙. 手术切除与射频消融治疗血管周围型单发小肝癌临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 523-527.
[13] 吕瑶, 张婵, 陈建华, 张鸣青. 压力控制容量保证通气模式在腹腔镜肝细胞癌切除术中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 528-533.
[14] 杨秀君, 崔梦莹, 张丹, 曲仙智, 苗云皓, 盛基尧, 郑戈, 刘水, 张学文. 信迪利单抗联合仑伐替尼成功转化治疗不可切除肝癌一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 581-584.
[15] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
阅读次数
全文


摘要