切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2023, Vol. 12 ›› Issue (03) : 258 -262. doi: 10.3877/cma.j.issn.2095-3232.2023.03.002

所属专题: 述评与论坛

专家论坛

人工智能在肝细胞癌诊疗中的应用
田亚1, 吴美龙2, 冯晓彬3,()   
  1. 1. 810000 西宁,青海大学附属医院肝胆胰外科
    2. 100084 北京,清华大学临床医学院
    3. 100084 北京,清华大学临床医学院;102218 北京,清华大学附属北京清华长庚医院肝胆胰中心
  • 收稿日期:2023-02-07 出版日期:2023-06-10
  • 通信作者: 冯晓彬
  • 基金资助:
    北京市自然科学基金(Z190024); 科技创新2030"新一代人工智能"重大项目(2020AAA0105005)

Artificial intelligence in diagnosis and treatments for hepatocellular carcinoma

Ya Tian1, Meilong Wu2, Xiaobin Feng3()   

  • Received:2023-02-07 Published:2023-06-10
  • Corresponding author: Xiaobin Feng
引用本文:

田亚, 吴美龙, 冯晓彬. 人工智能在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 258-262.

Ya Tian, Meilong Wu, Xiaobin Feng. Artificial intelligence in diagnosis and treatments for hepatocellular carcinoma[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(03): 258-262.

肝细胞癌(HCC)是原发性肝癌中最主要的病理类型,占75%~85%[1]。我国是肝病大国,全世界超过50%的肝癌发病及病死病例分布在中国,肝癌是严重危害人民生命健康的常见疾病[2]。机器学习(machine learning,ML)是人工智能(artificial intelligence,AI)的一个子集,基于ML算法的AI已在疾病辅助诊断、图像分析与处理、风险预测、临床决策等方面得到广泛应用和发展。个体化医疗和靶向治疗的应用伴随着标准医学数据集的快速发展,对定量图像分析的需求不断增加[3]。此外,计算机医学成像、高通量数据挖掘、预测分析、智能医疗决策等技术的发展将拓宽肝脏肿瘤学的应用范围。在大数据时代背景下,利用AI技术有效地处理大量的数字图像和医疗记录已成为各研究机构共同关注的热点。本文将重点探讨AI在HCC诊疗过程中的应用。

[1]
国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J].中华外科杂志, 2022, 60(4):273-309.
[2]
中国研究型医院学会肝胆胰外科专业委员会. 腹腔镜肝切除术治疗肝细胞癌中国专家共识(2020版)[J]. 中华消化外科杂志, 2020, 19(11):1119-1134.
[3]
Qiu Q, Duan J, Duan Z, et al. Reproducibility and non-redundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability[J]. Quant Imaging Med Surg, 2019, 9(3):453-464.
[4]
Xu Z, Wang X, Zeng S, et al. Applying artificial intelligence for cancer immunotherapy[J]. Acta Pharm Sin B, 2021, 11(11):3393-3405.
[5]
孙丽萍, 张良均. 基于Python和机器学习的临床决策[M]. 北京: 电子工业出版社, 2021:5.
[6]
Zhou LQ, Wang JY, Yu SY, et al. Artificial intelligence in medical imaging of the liver[J]. World J Gastroenterol, 2019, 25(6):672-682.
[7]
孙玉林, 余本国. Python机器学习算法与实战[M]. 北京: 电子工业出版社, 2021:2-6.
[8]
陈仲铭, 何明. 深度强化学习原理与实践[M]. 北京: 人民邮电出版社, 2019:2-10.
[9]
Sartoris R, Gregory J, Dioguardi Burgio M, et al. HCC advances in diagnosis and prognosis: digital and imaging[J]. Liver Int, 2021, 41 Suppl 1:73-77.
[10]
Sato M, Morimoto K, Kajihara S, et al. Machine-learning approach for the development of a novel predictive model for the diagnosis of hepatocellular carcinoma[J]. Sci Rep, 2019, 9(1):7704.
[11]
Schmauch B, Herent P, Jehanno P, et al. Diagnosis of focal liver lesions from ultrasound using deep learning[J]. Diagn Interv Imaging, 2019, 100(4):227-233.
[12]
Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis partⅠ: development of a convolutional neural network classifier for multi-phasic MRI[J]. Eur Radiol, 2019, 29(7):3338-3347.
[13]
Jiang H, Liu X, Chen J, et al. Man or machine? prospective comparison of the version 2018 EASL, LI-RADS criteria and a radiomics model to diagnose hepatocellular carcinoma[J]. Cancer Imaging, 2019, 19(1):84.
[14]
Medina-martínez JS, Arango-Ossa JE, Levine MF, et al. Isabl Platform, a digital biobank for processing multimodal patient data[J]. BMC Bioinformatics, 2020, 21(1):549.
[15]
Zhang L, Xia W, Yan ZP, et al. Deep learning predicts overall survival of patients with unresectable hepatocellular carcinoma treated by transarterial chemoembolization plus sorafenib[J]. Front Oncol, 2020(10):593292.
[16]
Saito A, Toyoda H, Kobayashi M, et al. Prediction of early recurrence of hepatocellular carcinoma after resection using digital pathology images assessed by machine learning[J]. Mod Pathol, 2021, 34(2):417-425.
[17]
Chaudhary K, Poirion OB, Lu L, et al. Deep learning-based multi-omics integration robustly predicts survival in liver cancer[J]. Clin Cancer Res, 2018, 24(6):1248-1259.
[18]
Mirestean CC, Pagute O, Buzea C, et al. Radiomic machine learning and texture analysis-new horizons for head and neck oncology[J]. Maedica, 2019, 14(2):126-130.
[19]
Giganti F, Antunes S, Salerno A, et al. Gastric cancer: texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker[J]. Eur Radiol, 2017, 27(5):1831-1839.
[20]
Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2):132-146.
[21]
刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图像图形学报, 2009, 14(4):622-635.
[22]
Caruso D, Zerunian M, Ciolina M, et al. Haralick's texture features for the prediction of response to therapy in colorectal cancer:a preliminary study[J]. Radiol Med, 2018, 123(3):161-167.
[23]
Su TH, Wu CH, Kao JH. Artificial intelligence in precision medicine in hepatology[J]. J Gastroenterol Hepatol, 2021, 36(3):569-580.
[24]
Hartmann L, Bundschuh L, Zsótér N, et al. Tumor heterogeneity for differentiation between liver tumors and normal liver tissue in 18F-FDG PET/CT[J]. Nuklearmedizin, 2021, 60(1):25-32.
[25]
Choi JM, Yu JS, Cho ES, et al. Texture analysis of hepatocellular carcinoma on magnetic resonance imaging: assessment for performance in predicting histopathologic grade[J]. J Comput Assist Tomogr, 2020, 44(6):901-910.
[26]
Brenet Defour L, Mulé S, Tenenhaus A, et al. Hepatocellular carcinoma: CT texture analysis as a predictor of survival after surgical resection[J]. Eur Radiol, 2019, 29(3):1231-1239.
[27]
Li Y, Xu X, Weng S, et al. CT image-based texture analysis to predict microvascular invasion in primary hepatocellular carcinoma[J].J Digit Imaging, 2020, 33(6):1365-1375.
[28]
Bhinder B, Gilvary C, Madhukar NS, et al. Artificial intelligence in cancer research and precision medicine[J]. Cancer Discov, 2021, 11(4):900-915.
[29]
Abajian A, Murali N, Savic LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning-an artificial intelligence concept[J].J Vasc Interv Radiol, 2018, 29(6):850-857, e1.
[30]
Morshid A, Elsayes KM, Khalaf AM, et al. A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization[J]. Radiol Artif Intell, 2019, 1(5):e180021.
[31]
An C, Jiang Y, Huang Z, et al. Assessment of ablative margin after microwave ablation for hepatocellular carcinoma using deep learning-based deformable image registration[J]. Front Oncol, 2020(10):573316.
[32]
Kim S, Kim DY, An C, et al. Evaluation of early response to treatment of hepatocellular carcinoma with yttrium-90 radioembolization using quantitative computed tomography analysis[J]. Korean J Radiol, 2019, 20(3):449-458.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[4] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[5] 杜锡林, 谭凯, 贺小军, 白亮亮, 赵瑶瑶. 肝细胞癌转化治疗方式[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 597-601.
[6] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[7] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[8] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[9] 张文华, 陶焠, 胡添松. 不同部位外生型肝癌临床病理特点及其对术后肝内复发和预后影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 651-655.
[10] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[11] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[12] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[13] 叶文涛, 吴忠均, 廖锐. 癌旁组织ALOX15表达与肝癌根治性切除术后预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 708-712.
[14] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[15] 郭震天, 张宗明, 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤. 机器学习算法预测老年急性胆囊炎术后住院时间探索[J]. 中华临床医师杂志(电子版), 2023, 17(9): 955-961.
阅读次数
全文


摘要