[1] |
国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J].中华外科杂志, 2022, 60(4):273-309.
|
[2] |
中国研究型医院学会肝胆胰外科专业委员会. 腹腔镜肝切除术治疗肝细胞癌中国专家共识(2020版)[J]. 中华消化外科杂志, 2020, 19(11):1119-1134.
|
[3] |
Qiu Q, Duan J, Duan Z, et al. Reproducibility and non-redundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability[J]. Quant Imaging Med Surg, 2019, 9(3):453-464.
|
[4] |
Xu Z, Wang X, Zeng S, et al. Applying artificial intelligence for cancer immunotherapy[J]. Acta Pharm Sin B, 2021, 11(11):3393-3405.
|
[5] |
孙丽萍, 张良均. 基于Python和机器学习的临床决策[M]. 北京: 电子工业出版社, 2021:5.
|
[6] |
Zhou LQ, Wang JY, Yu SY, et al. Artificial intelligence in medical imaging of the liver[J]. World J Gastroenterol, 2019, 25(6):672-682.
|
[7] |
孙玉林, 余本国. Python机器学习算法与实战[M]. 北京: 电子工业出版社, 2021:2-6.
|
[8] |
陈仲铭, 何明. 深度强化学习原理与实践[M]. 北京: 人民邮电出版社, 2019:2-10.
|
[9] |
Sartoris R, Gregory J, Dioguardi Burgio M, et al. HCC advances in diagnosis and prognosis: digital and imaging[J]. Liver Int, 2021, 41 Suppl 1:73-77.
|
[10] |
Sato M, Morimoto K, Kajihara S, et al. Machine-learning approach for the development of a novel predictive model for the diagnosis of hepatocellular carcinoma[J]. Sci Rep, 2019, 9(1):7704.
|
[11] |
Schmauch B, Herent P, Jehanno P, et al. Diagnosis of focal liver lesions from ultrasound using deep learning[J]. Diagn Interv Imaging, 2019, 100(4):227-233.
|
[12] |
Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis partⅠ: development of a convolutional neural network classifier for multi-phasic MRI[J]. Eur Radiol, 2019, 29(7):3338-3347.
|
[13] |
Jiang H, Liu X, Chen J, et al. Man or machine? prospective comparison of the version 2018 EASL, LI-RADS criteria and a radiomics model to diagnose hepatocellular carcinoma[J]. Cancer Imaging, 2019, 19(1):84.
|
[14] |
Medina-martínez JS, Arango-Ossa JE, Levine MF, et al. Isabl Platform, a digital biobank for processing multimodal patient data[J]. BMC Bioinformatics, 2020, 21(1):549.
|
[15] |
Zhang L, Xia W, Yan ZP, et al. Deep learning predicts overall survival of patients with unresectable hepatocellular carcinoma treated by transarterial chemoembolization plus sorafenib[J]. Front Oncol, 2020(10):593292.
|
[16] |
Saito A, Toyoda H, Kobayashi M, et al. Prediction of early recurrence of hepatocellular carcinoma after resection using digital pathology images assessed by machine learning[J]. Mod Pathol, 2021, 34(2):417-425.
|
[17] |
Chaudhary K, Poirion OB, Lu L, et al. Deep learning-based multi-omics integration robustly predicts survival in liver cancer[J]. Clin Cancer Res, 2018, 24(6):1248-1259.
|
[18] |
Mirestean CC, Pagute O, Buzea C, et al. Radiomic machine learning and texture analysis-new horizons for head and neck oncology[J]. Maedica, 2019, 14(2):126-130.
|
[19] |
Giganti F, Antunes S, Salerno A, et al. Gastric cancer: texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker[J]. Eur Radiol, 2017, 27(5):1831-1839.
|
[20] |
Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2):132-146.
|
[21] |
刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图像图形学报, 2009, 14(4):622-635.
|
[22] |
Caruso D, Zerunian M, Ciolina M, et al. Haralick's texture features for the prediction of response to therapy in colorectal cancer:a preliminary study[J]. Radiol Med, 2018, 123(3):161-167.
|
[23] |
Su TH, Wu CH, Kao JH. Artificial intelligence in precision medicine in hepatology[J]. J Gastroenterol Hepatol, 2021, 36(3):569-580.
|
[24] |
Hartmann L, Bundschuh L, Zsótér N, et al. Tumor heterogeneity for differentiation between liver tumors and normal liver tissue in 18F-FDG PET/CT[J]. Nuklearmedizin, 2021, 60(1):25-32.
|
[25] |
Choi JM, Yu JS, Cho ES, et al. Texture analysis of hepatocellular carcinoma on magnetic resonance imaging: assessment for performance in predicting histopathologic grade[J]. J Comput Assist Tomogr, 2020, 44(6):901-910.
|
[26] |
Brenet Defour L, Mulé S, Tenenhaus A, et al. Hepatocellular carcinoma: CT texture analysis as a predictor of survival after surgical resection[J]. Eur Radiol, 2019, 29(3):1231-1239.
|
[27] |
Li Y, Xu X, Weng S, et al. CT image-based texture analysis to predict microvascular invasion in primary hepatocellular carcinoma[J].J Digit Imaging, 2020, 33(6):1365-1375.
|
[28] |
Bhinder B, Gilvary C, Madhukar NS, et al. Artificial intelligence in cancer research and precision medicine[J]. Cancer Discov, 2021, 11(4):900-915.
|
[29] |
Abajian A, Murali N, Savic LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning-an artificial intelligence concept[J].J Vasc Interv Radiol, 2018, 29(6):850-857, e1.
|
[30] |
Morshid A, Elsayes KM, Khalaf AM, et al. A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization[J]. Radiol Artif Intell, 2019, 1(5):e180021.
|
[31] |
An C, Jiang Y, Huang Z, et al. Assessment of ablative margin after microwave ablation for hepatocellular carcinoma using deep learning-based deformable image registration[J]. Front Oncol, 2020(10):573316.
|
[32] |
Kim S, Kim DY, An C, et al. Evaluation of early response to treatment of hepatocellular carcinoma with yttrium-90 radioembolization using quantitative computed tomography analysis[J]. Korean J Radiol, 2019, 20(3):449-458.
|