[1] |
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204): 1145-1158. DOI: 10.1016/S0140-6736(19)30427-1.
|
[2] |
Boni L, David G, Mangano A, et al. Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery[J]. Surg Endosc, 2015, 29(7): 2046-2055. DOI: 10.1007/s00464-014-3895-x.
|
[3] |
Wen T, Jin C, Facciorusso A, et al. Multidisciplinary management of recurrent and metastatic hepatocellular carcinoma after resection: an international expert consensus[J]. Hepatobiliary Surg Nutr, 2018, 7(5): 353-371. DOI: 10.21037/hbsn.2018.08.01.
|
[4] |
|
[5] |
|
[6] |
Tsilimigras DI, Sahara K, Moris D, et al. Effect of surgical margin width on patterns of recurrence among patients undergoing R0 hepatectomy for T1 hepatocellular carcinoma: an international multi-institutional analysis[J]. J Gastrointest Surg, 2020, 24(7): 1552-1560. DOI: 10.1007/s11605-019-04275-0.
|
[7] |
|
[8] |
Verma A, Maram J, Alagorie AR, et al. Distribution and location of Vortex vein ampullae in healthy human eyes as assessed by ultra-widefield indocyanine green angiography[J]. Ophthalmol Retina, 2020, 4(5): 530-534. DOI: 10.1016/j.oret.2019.11.009.
|
[9] |
|
[10] |
Ishizawa T, Fukushima N, Shibahara J, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging[J]. Cancer, 2009, 115(11): 2491-2504. DOI: 10.1002/cncr.24291.
|
[11] |
Nishino H, Hatano E, Seo S, et al. Real-time navigation for liver surgery using projection mapping with indocyanine green fluorescence: development of the novel medical imaging projection system[J]. Ann Surg, 2018, 267(6): 1134-1140. DOI: 10.1097/SLA.0000000000002172.
|
[12] |
|
[13] |
Beger HG, Nakao A, Mayer B, et al. Duodenum-preserving total and partial pancreatic head resection for benign tumors—systematic review and meta-analysis[J]. Pancreatology, 2015, 15(2): 167-178. DOI: 10.1016/j.pan.2015.01.009.
|
[14] |
Spinoglio G, Bertani E, Borin S, et al. Green indocyanine fluorescence in robotic abdominal surgery[J]. Updates Surg, 2018, 70(3): 375-379. DOI: 10.1007/s13304-018-0585-6.
|
[15] |
|
[16] |
Baiocchi GL, Diana M, Boni L. Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: state of the art and future directions[J]. World J Gastroenterol, 2018, 24(27): 2921-2930. DOI: 10.3748/wjg.v24.i27.2921.
|
[17] |
|
[18] |
Majlesara A, Golriz M, Hafezi M, et al. Indocyanine green fluorescence imaging in hepatobiliary surgery[J]. Photodiagnosis Photodyn Ther, 2017, 17: 208-215. DOI: 10.1016/j.pdpdt.2016.12.005.
|
[19] |
Abo T, Nanashima A, Tobinaga S, et al. Usefulness of intraoperative diagnosis of hepatic tumors located at the liver surface and hepatic segmental visualization using indocyanine green-photodynamic eye imaging[J]. Eur J Surg Oncol, 2015, 41(2): 257-264. DOI: 10.1016/j.ejso.2014.09.008.
|
[20] |
Masuda K, Kaneko J, Kawaguchi Y, et al. Diagnostic accuracy of indocyanine green fluorescence imaging and multidetector row computed tomography for identifying hepatocellular carcinoma with liver explant correlation[J]. Hepatol Res, 2017, 47(12): 1299-1307. DOI: 10.1111/hepr.12870.
|
[21] |
Ishizawa T, Masuda K, Urano Y, et al. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma[J]. Ann Surg Oncol, 2014, 21(2): 440-448. DOI: 10.1245/s10434-013-3360-4.
|
[22] |
Ishizawa T, Kokudo N. Identification of hepatocellular carcinoma[M]// Fluorescent Imaging. Basel: S. Karger AG, 2013: 10-17. DOI: 10.1159/000348601.
|
[23] |
|