切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2023, Vol. 12 ›› Issue (03) : 272 -277. doi: 10.3877/cma.j.issn.2095-3232.2023.03.005

所属专题: 临床研究

临床研究

基于卷积神经网络的肝细胞癌复发预警数字病理学模型研究
孟锦雯1, 刘治坤2, 顾钰峰3, 王建国2, 杨帆2, 郑树森4, 徐骁1,()   
  1. 1. 310058 杭州,浙江大学医学院;310006 杭州,浙江省肿瘤融合研究与智能医学重点实验室
    2. 310006 杭州,浙江省肿瘤融合研究与智能医学重点实验室;310006 杭州,浙江大学医学院附属杭州市第一人民医院肝胆胰外科
    3. 310053 杭州,浙江中医药大学第四临床医学院
    4. 310006 杭州,浙江大学医学院附属第一医院肝胆胰外科
  • 收稿日期:2023-01-04 出版日期:2023-06-10
  • 通信作者: 徐骁
  • 基金资助:
    国家自然科学基金重大研究计划(92159202); 浙江省自然科学基金(LZ22H180003); 浙江省教育厅一般科研项目(Y202148349)

Study of digital pathological model based on convolutional neural network for early warning of recurrence of hepatocellular carcinoma

Jinwen Meng1, Zhikun Liu2, Yufeng Gu3, Jianguo Wang2, Fan Yang2, Shusen Zheng4, Xiao Xu1,()   

  1. 1. Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology Research and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
    2. Key Laboratory of Integrated Oncology Research and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
    3. The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
    4. Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
  • Received:2023-01-04 Published:2023-06-10
  • Corresponding author: Xiao Xu
引用本文:

孟锦雯, 刘治坤, 顾钰峰, 王建国, 杨帆, 郑树森, 徐骁. 基于卷积神经网络的肝细胞癌复发预警数字病理学模型研究[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 272-277.

Jinwen Meng, Zhikun Liu, Yufeng Gu, Jianguo Wang, Fan Yang, Shusen Zheng, Xiao Xu. Study of digital pathological model based on convolutional neural network for early warning of recurrence of hepatocellular carcinoma[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(03): 272-277.

目的

探讨基于卷积神经网络(CNN)的数字病理学模型在肝癌复发预警中的预测价值。

方法

本研究包含4个肝癌队列,队列1和队列3为训练集,队列2和队列4为验证集。队列1、2、3分别有202、179、738例患者,来源于2012年1月至2017年1月浙江大学医学院附属第一医院1 119例肝癌患者。队列4是来自美国的癌症基因组图谱(TCGA)数据库361例患者。首先,在队列1运用7种CNNs(AlexNet、Squeezenet、InceptionV3、GoogleNet、DenseNet201、VGG19和ResNet18)训练肝癌病理切片病灶自动识别模型,区分肿瘤区域与正常组织;选择最佳的神经网络模型,通过迁移学习构建肿瘤区域成分抽提模型,解析肿瘤区域5种不同成分(肿瘤细胞、淋巴细胞、间质、坏死及背景),并在队列2上验证;在队列3上探索这5种成分与肝癌术后复发的相关性,并联合临床特征构建肝癌术后复发预警模型,在队列4进行独立的外部验证。生存分析采用Kaplan-Meier法和Log-rank检验,生存预后影响因素分析采用LASSO-Cox比例风险回归模型。

结果

在队列1中,AlexNet、DenseNet201、VGG19和ResNet18鉴别肝癌病灶的准确率均高于95.0%。在队列2中,神经网络VGG19的准确率最佳,达96.4%,选择VGG19迁移至肿瘤区域成分抽提模型,其分割5种成分的准确率达99.0%。在队列3中,多因素Cox分析显示,高淋巴细胞神经网络评分(LYM)和低间质神经网络评分(STR)与患者术后复发明显相关(HR=0.70,1.38;P<0.05);基于LYM、STR、AFP、美国癌症联合委员会(AJCC)分期构建术后复发风险的预警模型,在训练集和验证集中,模型可对患者术后复发风险精准分层(χ2=45.06,15.49;P<0.05)。在独立队列4中,肝癌复发预警模型进一步验证,LYM、STR病理特征综合评分可提高AJCC分期的无复发生存预测能力。

结论

基于CNN的肝癌病灶自动识别模型和肿瘤区域成分抽提模型可智能化分割肝癌数字病理切片,实现肝癌术后复发预警,LYM、STR为术后复发相关的新型病理预测因子。

Objective

To evaluate the predictive value of digital pathological model based on convolutional neural network (CNN) in the early warning of recurrence of hepatocellular carcinoma (HCC).

Methods

This study consisted of 4 HCC cohorts. Cohort 1 and 3 were taken as the training sets, and cohort 2 and 4 as the validation sets. 1 119 HCC patients admitted to the First Affiliated Hospital of Zhejiang University from January 2012 to January 2017 were enrolled and assigned into cohort 1 (n=202), 2 (n=179) and 3 (n=738), respectively. 361 patients from The Cancer Genome Atlas (TCGA) were allocated incohort 4. First, 7 CNNs (AlexNet, Squeezenet, InceptionV3, GoogleNet, DenseNet201, VGG19 and ResNet18) were used to train the automatic recognition model of pathological sections of HCC to distinguish tumor region from normal tissues. The optimal neural network model was chosen. The component extraction model for tumor region was constructed through transfer learning, and 5 different components (tumor cells, lymphocytes, stroma, necrosis and background) in the tumor region were analyzed and were validated by cohort 2. The correlation between these 5 components and postoperative recurrence of HCC was analyzed in cohort 3. A warning model of postoperative recurrence of HCC was constructed based on clinical features, which was subjected to independent external validation in cohort 4. Survival analysis was conducted by Kaplan-Meier method and Log-rank test. Prognostic factors were analyzed by Cox proportional hazards regression model with LASSO method.

Results

In cohort 1, the accuracy rates of AlexNet, DenseNet201, VGG19 and ResNet18 in distinguishing HCC lesions were all above 95.0%. In cohort 2, the accuracy rate of neural network VGG19 was the highest up to 96.4%. When VGG19 was transferred to the component extraction model in the tumor region, the accuracy rate of segmenting 5 components reached 99.0%. Incohort 3, multivariate Cox analysis showed that high lymphocyte (LYM) neural network score and low stroma (STR) neural network score were significantly correlated with postoperative recurrence (HR=0.70, 1.38; P<0.05). Based on LYM, STR, AFP and American Joint Committee on Cancer (AJCC) staging, the early warning model of the risk of postoperative recurrence was constructed. In the training and validation sets, the models could accurately classify the risk of postoperative recurrence risk of patients (χ2=45.06, 15.49; P<0.05). In the independent cohort 4, the early warning model of HCC recurrence was further validated, and the comprehensive scores of LYM and STR pathological features could improve the prediction capability of AJCC staging for recurrence-free survival.

Conclusions

The CNN-based automatic recognition model for HCC lesions and the component extraction model in tumor region can deliver intelligent segmentation of digital pathological sections of HCC and provide early warning of postoperative recurrence of HCC. LYM and STR are novel pathological predictors for postoperative recurrence.

图1 肝癌区域自动分割模型鉴别五类组织注:a~e分别为队列1和2中5类组织的代表性病理切片的背景、坏死、淋巴细胞、间质、肝癌细胞(HE染色128×128像素);f~j为DeepDream可视化5类组织
图2 基于队列3构建肝癌复发风险预警模型注:a为淋巴细胞神经网络评分(LYM)Kaplan-Meier生存曲线;b为间质神经网络评分(STR)Kaplan-Meier生存曲线;c为基于神经网络评分的4种肝癌亚型Kaplan-Meier生存曲线;d为肝癌术后复发多因素生存分析森林图;e为训练集肝癌复发风险预警模型Kaplan-Meier生存曲线;f为验证集肝癌复发风险预警模型Kaplan-Meier生存曲线;AJCC为美国癌症联合委员会
图3 神经网络评分在TCGA队列中的应用注:a为不同危险因素预警肝癌复发的净重新分类改善指数(NRI);b为不同危险因素预警肝癌复发的决策分析曲线;c为不同危险因素预警肝癌复发的时间依赖性曲线的曲线下面积(AUC);AJCC为美国癌症联合委员会,LYM为淋巴细胞神经网络评分,STR为间质神经网络评分,TCGA为癌症基因组图谱
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
[2]
Llovet JM, Montal R, Villanueva A. Randomized trials and endpoints in advanced HCC: role of PFS as a surrogate of survival[J].J Hepatol, 2019, 70(6):1262-1277.
[3]
Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology-new tools for diagnosis and precision oncology[J]. Nat Rev Clin Oncol, 2019, 16(11):703-715.
[4]
Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence[J]. Lancet Oncol, 2019, 20(5):e253-261.
[5]
杨鑫, 章真. 基于深度学习的人工智能在数字病理学中的进展[J]. 中国癌症杂志, 2021, 31(2):151-155.
[6]
Tam A, Barker J, Rubin D. A method for normalizing pathology images to improve feature extraction for quantitative pathology[J]. Med Phys, 2016, 43(1):528.
[7]
Liao L, Zhao Y, Wei S, et al. Parameter distribution balanced CNNs[J]. IEEE Trans Neural Netw Learn Syst, 2020, 31(11):4600-4609.
[8]
Lee HJ, Ullah I, Wan W, et al. Real-time vehicle make and model recognition with the residual squeeze net architecture[J]. Sensors, 2019, 19(5):982.
[9]
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent[J]. J Stat Softw, 2010, 33(1):1-22.
[10]
Pencina MJ, D'Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers[J]. Stat Med, 2011, 30(1):11-21.
[11]
Vickers AJ, van Calster B, Steyerberg EW. A simple, step-by-step guide to interpreting decision curve analysis[J]. Diagn Progn Res, 2019(3):18.
[12]
Berardi G, Morise Z, Sposito C, et al. Development of a nomogram to predict outcome after liver resection for hepatocellular carcinoma in Child-Pugh B cirrhosis[J]. J Hepatol, 2020, 72(1):75-84.
[13]
Kather JN, Pearson AT, Halama N, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer[J]. Nat Med, 2019, 25(7):1054-1056.
[14]
Skrede OJ, De Raedt S, Kleppe A, et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study[J]. Lancet, 2020, 395(10221):350-360.
[15]
van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic[J]. Nat Med, 2021, 27(5):775-784.
[16]
Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images[J]. Nat Med, 2019, 25(8):1301-1309.
[17]
Price WN. Big data and black-box medical algorithms[J]. Sci Transl Med, 2018, 10(471):eaao5333.
[18]
van der Velden BHM, Kuijf HJ, Gilhuijs KGA, et al. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis[J]. Med Image Anal, 2022(79):102470.
[19]
Ding X, He M, Chan AWH, et al. Genomic and epigenomic features of primary and recurrent hepatocellular carcinomas[J]. Gastroenterology, 2019, 157(6):1630-1645, e6.
[20]
Boehm KM, Khosravi P, Vanguri R, et al. Harnessing multimodal data integration to advance precision oncology[J]. Nat Rev Cancer, 2022, 22(2):114-126.
[1] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[2] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[3] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[4] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[5] 谢田伟, 庞于樊, 吴丽. 超声引导下不同消融术对甲状腺良性结节体积缩减率、复发率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 80-83.
[6] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[7] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[8] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[9] 李一帆, 朱帝文, 任伟新, 鲍应军, 顾俊鹏, 张海潇, 曹耿飞, 阿斯哈尔·哈斯木, 纪卫政. 血GP73水平在原发性肝癌TACE疗效评价中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 825-830.
[10] 刘敏思, 李荣, 李媚. 基于GGT与Plt比值的模型在HBV相关肝细胞癌诊断中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 831-835.
[11] 焦振东, 惠鹏, 金上博. 三维可视化结合ICG显像技术在腹腔镜肝切除术治疗复发性肝癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 859-864.
[12] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[13] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[14] 吴警, 吐尔洪江·吐逊, 温浩. 肝切除术前肝功能评估新进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 889-893.
[15] 郭曌蓉, 王歆光, 刘毅强, 何英剑, 王立泽, 杨飏, 汪星, 曹威, 谷重山, 范铁, 李金锋, 范照青. 不同亚型乳腺叶状肿瘤的临床病理特征及预后危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 524-532.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?