[1] |
|
[2] |
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
|
[3] |
|
[4] |
Vitale A, Svegliati-Baroni G, Ortolani A, et al. Epidemiological trends and trajectories of MAFLD-associated hepatocellular carcinoma 2002-2033: the ITA.LI.CA database[J]. Gut, 2023, 72(1): 141-152. DOI: 10.1136/gutjnl-2021-324915.
|
[5] |
Chang Y, Jeong SW, Young Jang J, et al. Recent updates of transarterial chemoembolilzation in hepatocellular carcinoma[J]. Int J Mol Sci, 2020, 21(21): 8165. DOI: 10.3390/ijms21218165.
|
[6] |
Brown ZJ, Tsilimigras DI, Ruff SM, et al. Management of hepatocellular carcinoma: a review[J]. JAMA Surg, 2023, 158(4): 410-420. DOI: 10.1001/jamasurg.2022.7989.
|
[7] |
|
[8] |
Yang C, Zhang H, Zhang L, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(4): 203-222. DOI: 10.1038/s41575-022-00704-9.
|
[9] |
Llovet JM, De Baere T, Kulik L, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(5): 293-313. DOI: 10.1038/s41575-020-00395-0.
|
[10] |
Dale B, Cheng M, Park KS, et al. Advancing targeted protein degradation for cancer therapy[J]. Nat Rev Cancer, 2021, 21(10): 638-654. DOI: 10.1038/s41568-021-00365-x.
|
[11] |
Spano D, Catara G. Targeting the ubiquitin-proteasome system and recent advances in cancer therapy[J]. Cells, 2023, 13(1): 29. DOI: 10.3390/cells13010029.
|
[12] |
Sampson C, Wang Q, Otkur W, et al. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy[J]. Clin Transl Med, 2023, 13(3): e1204. DOI: 10.1002/ctm2.1204.
|
[13] |
Wade Harper J, Schulman BA. Cullin-RING ubiquitin ligase regulatory circuits: a quarter century beyond the F-box hypothesis[J]. Annu Rev Biochem, 2021, 90: 403-429. DOI: 10.1146/annurev-biochem-090120-013613.
|
[14] |
|
[15] |
Chen L, Cochran AM, Waite JM, et al. Direct attenuation of Arabidopsis ERECTA signalling by a pair of U-box E3 ligases[J]. Nat Plants, 2023, 9(1): 112-127. DOI: 10.1038/s41477-022-01303-x.
|
[16] |
Wang W, Shi B, Cong R, et al. RING-finger E3 ligases regulatory network in PI3K/AKT-mediated glucose metabolism[J]. Cell Death Discov, 2022, 8(1): 372. DOI: 10.1038/s41420-022-01162-7.
|
[17] |
Tong Y, Lear TB, Evankovich J, et al. The RNFT2/IL-3Rα axis regulates IL-3 signaling and innate immunity[J]. JCI Insight, 2020, 5(3): e133652. DOI: 10.1172/jci.insight.133652.
|
[18] |
Sasahara M, Kanda M, Shimizu D, et al. Tissue RNFT2 expression levels are associated with peritoneal recurrence and poor prognosis in gastric cancer[J]. Anticancer Res, 2021, 41(2): 609-617. DOI: 10.21873/anticanres.14812.
|
[19] |
Lv J, Song Q, Bai K, et al. N6-methyladenosine-related single-nucleotide polymorphism analyses identify oncogene RNFT2 in bladder cancer[J]. Cancer Cell Int, 2022, 22(1): 301. DOI: 10.1186/s12935-022-02701-z.
|
[20] |
Chandrashekar DS, Karthikeyan SK, Korla PK, et al. UALCAN: an update to the integrated cancer data analysis platform[J]. Neoplasia, 2022, 25: 18-27. DOI: 10.1016/j.neo.2022.01.001.
|
[21] |
Ganesan P, Kulik LM. Hepatocellular carcinoma: new developments[J]. Clin Liver Dis, 2023, 27(1): 85-102. DOI: 10.1016/j.cld.2022.08.004.
|
[22] |
El-Khoueiry AB, Hanna DL, Llovet J, et al. Cabozantinib: an evolving therapy for hepatocellular carcinoma[J]. Cancer Treat Rev, 2021, 98: 102221. DOI: 10.1016/j.ctrv.2021.102221.
|
[23] |
Cai C, Tang YD, Zhai J, et al. The RING finger protein family in health and disease[J]. Signal Transduct Target Ther, 2022, 7(1): 300. DOI: 10.1038/s41392-022-01152-2.
|
[24] |
Okamoto T, Imaizumi K, Kaneko M. The role of tissue-specific ubiquitin ligases, RNF183, RNF186, RNF182 and RNF152, in disease and biological function[J]. Int J Mol Sci, 2020, 21(11): 3921. DOI: 10.3390/ijms21113921.
|
[25] |
Lin Z, Yang P, Hu Y, et al. RING finger protein 13 protects against nonalcoholic steatohepatitis by targeting STING-relayed signaling pathways[J]. Nat Commun, 2023, 14(1): 6635. DOI: 10.1038/s41467-023-42420-1.
|
[26] |
Yin J, Zhu JM, Shen XZ. The role and therapeutic implications of RING-finger E3 ubiquitin ligases in hepatocellular carcinoma[J]. Int J Cancer, 2015, 136(2): 249-257. DOI: 10.1002/ijc.28717.
|
[27] |
Feng Z, Ke S, Wang C, et al. RNF125 attenuates hepatocellular carcinoma progression by downregulating SRSF1-ERK pathway[J]. Oncogene, 2023, 42(24): 2017-2030. DOI: 10.1038/s41388-023-02710-w.
|
[28] |
Kodama T, Kodama M, Jenkins NA, et al. Ring finger protein 125 is an anti-proliferative tumor suppressor in hepatocellular carcinoma[J]. Cancers, 2022, 14(11): 2589. DOI: 10.3390/cancers14112589.
|
[29] |
Hoshino K, Nakazawa S, Yokobori T, et al. RNF31 promotes proliferation and invasion of hepatocellular carcinoma via nuclear factor kappaB activation[J]. Sci Rep, 2024, 14(1): 346. DOI: 10.1038/s41598-023-50594-3.
|
[30] |
Shen G, Wang H, Zhu N, et al. HIF-1/2α-activated RNF146 enhances the proliferation and glycolysis of hepatocellular carcinoma cells via the PTEN/AKT/mTOR pathway[J]. Front Cell Dev Biol, 2022, 10: 893888. DOI: 10.3389/fcell.2022.893888.
|