切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2013, Vol. 02 ›› Issue (03) : 186 -193. doi: 10.3877/cma.j.issn.2095-3232.2013.03.011

所属专题: 文献

基础研究

活化态肝星状细胞对小鼠肝细胞肝癌血管形成、肿瘤生长及转移的作用
陈之巨1, 林楠1, 潘楚芝1, 卢逸1, 许瑞云1,()   
  1. 1. 510680 广州,中山大学附属第三医院肝胆外科
  • 收稿日期:2013-03-18 出版日期:2013-06-10
  • 通信作者: 许瑞云
  • 基金资助:
    国家自然科学基金资助项目(81272642); 中央高校基本科研业务费专项资金资助项目(11ykpy40)

Promotion of activated hepatic stellate cells to the angiogenesis, proliferation and metastasis of hepatocellular carcinoma in mice

Zhi-ju CHEN1, Nan LIN1, Chu-zhi PAN1, Yi LU1, Rui-yun XU1,()   

  1. 1. Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Sun Yet-sen University, Guangzhou 510630, China
  • Received:2013-03-18 Published:2013-06-10
  • Corresponding author: Rui-yun XU
  • About author:
    Corresponding author: XU Rui-yun, Email:
引用本文:

陈之巨, 林楠, 潘楚芝, 卢逸, 许瑞云. 活化态肝星状细胞对小鼠肝细胞肝癌血管形成、肿瘤生长及转移的作用[J]. 中华肝脏外科手术学电子杂志, 2013, 02(03): 186-193.

Zhi-ju CHEN, Nan LIN, Chu-zhi PAN, Yi LU, Rui-yun XU. Promotion of activated hepatic stellate cells to the angiogenesis, proliferation and metastasis of hepatocellular carcinoma in mice[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2013, 02(03): 186-193.

目的

探讨活化态的肝星状细胞(HSC)对小鼠肝细胞肝癌(肝癌)血管形成、肿瘤生长及转移的作用。

方法

将30只BALB/c-nu雌性裸鼠按随机数字表法分成3组,每组各10只,单纯组将1×106个H22肝癌细胞注射于裸鼠肝脏,低浓度组将1×106个H22肝癌细胞及1×105个羟基荧光素二醋酸盐琥珀酰亚胺酯(CFSE)标记的HSC-T6细胞注射于裸鼠肝脏,高浓度组将1×106个H22肝癌细胞及4×105个CFSE标记的HSC-T6细胞注射于裸鼠肝脏;各组裸鼠生长50 d后处死,观察肝原位肿瘤、肝转移瘤、肺转移瘤的数量和体积。应用免疫组织化学方法(免疫组化法)检测肝原发肿瘤组织、肝转移瘤组织及肺转移瘤α-平滑肌肌动蛋白(α-SMA)、胶质纤维酸性蛋白(GFAP)、分化群抗原(CD)34、血管内皮生长因子(VEGF)及增殖细胞核抗原(PCNA)的表达水平;用蛋白质印迹法检测VEGF蛋白含量。观察HSC对肝癌血管形成、增殖作用影响。两组实验数据比较采用t检验,3组实验数据比较采用单因素方差分析,两两比较采用LSD-t检验。

结果

免疫荧光法检测显示HSC-T6细胞株中HSC细胞纯度>95%,CFSE标记的HSC为绿色荧光细胞,细胞培养8周,CFSE染色的荧光强度稳定。单纯组肝癌成瘤率70%,低浓度组成瘤率70%,高浓度组成瘤率为80%。高浓度组肝内原位肿瘤体积明显大于低浓度组及单纯肝癌细胞组,差异有统计学意义(LSD-t=0.04,0.04;P<0.05)。高浓度组裸鼠肝内转移瘤及肺转移瘤数目明显多于低浓度组及单纯组(LSD-t=0.33,0.57;P<0.05)。单纯组、低浓度组及高浓度组原发肿瘤组织中α-SMA数密度分别为(19±4)、(42±4)及(62±6)个/高倍镜视野,高浓度组α-SMA数密度明显多于低浓度组及单纯肝癌细胞组,差异有统计学意义(LSD-t=2.12,2.12;P<0.05);单纯组、低浓度组及高浓度组原发肿瘤组织中GFAP数密度分别为(15±4)、(36±5)、(57±5)个/高倍镜视野,高浓度组GFAP数密度明显多于低浓度组及单纯肝癌细胞组,差异有统计学意义(LSD-t=2.00,2.00;P<0.05)。单纯组、低浓度组及高浓度组原发肿瘤组织中CD34数密度分别为(19.0±2.6)、(31.0±6.2)、(43.0±8.3)个/高倍镜视野,高浓度组CD34数密度明显多于低浓度组及单纯组(LSD-t=2.75,2.75;P<0.05)。肝转移瘤组织标本中,肿瘤直径<1 mm的肝转移瘤中见微量CD34表达,数密度为(2.1±0.6)个/高倍镜视野;在肿瘤直径为1~3 mm的肝转移瘤中,CD34表达的数密度为(11.2±3.3)个/高倍镜视野,明显多于在直径<1 mm的肝转移瘤组织(t=8.69,P<0.05)。单纯组、低浓度组及高浓度组原位肿瘤标本中VEGF吸光度值分别为0.21±0.05、0.31±0.06、0.42±0.06,高浓度组VEGF吸光度值明显高于低密度组及单纯组(LSD-t=0.07,0.07;P<0.05)。单纯组、低浓度组及高浓度组肝原位肿瘤VEGF蛋白相对含量分别为0.19±0.02、0.36±0.05、0.45±0.06,高浓度组VEGF蛋白相对含量明显高于低密度组及单纯组(LSD-t=0.02,0.02;P<0.05)。单纯组、低浓度组及高浓度组原位肿瘤标本PCNA增殖指数(PCNA-LI)分别为(46±7)%、(68±10)%、(87±9)%,高浓度组明显多于低浓度组和单纯组,差异有统计学意义(LSD-t=3.89,3.89;P<0.05)。

结论

HSC可能通过调节肝癌血管形成而影响肝癌生长及转移。

Objective

To investigate the effect of activated hepatic stellate cells(HSC) to angiogenesis, proliferation and metastasis of hepatocellular carcinoma (HCC).

Methods

Thirty BALB/c-nu female nude mice were divided into 3 groups according to randomly digital table: normal control group, low consistency group and high consistency group with 10 mice in each group. Mice in the normal control group received an intrahepatic injection of 1×106 hepatoma cells(H22), low consistency group 1×106 H22 and 1×105 HSC-T6 cells labeled by (5, 6-carboxyfluorescein diacetate, succinimidyl ester, CFSE) , and high consistency group 1×106 H22 and 4×105 HSC-T6 cells labeled by CFSE. The mice in 3 groups were killed after 50 days and the number and size of tumors in situ, hepatic and pulmonary metastases were observed. The expression level of α-smooth muscle actin(α-SMA), glial fibrillary acidic protein (GFAP) , cluster of differentiation(CD) 34, vascular endothelial growth factor (VEGF) , proliferating cell nuclear antigen (PCNA) in tissues of primary tumors, hepatic and pulmonary metastases were tested by immunohistochemistry. Western blot were used to examine the protein level of VEGF. The effect of HSC to the angiogenesis, proliferation of HCC was observed. The experimental data between two groups was compared using t test. And the data of three groups were compared using one-way analysis of variance, and the comparison between two groups was performed using LSD-t test.

Results

The cell purity of HSC>95% in the cell line of HSC-T6. The HSC labeled by CFSE were green fluorescent cells. The fluorescent intensity of CFSE staining of was stable after 8 weeks of cell culture. The tumor formation rate in the normal control group was 70%, low consistency group was 70%, and the high consistency group was 80%. The size of primary tumors in the high consistency group was obviously larger than the other 2 groups, and there was significant difference (LSD-t=0.04, 0.04; P<0.05). The number of intrahepatic and pulmonary metastases of mice in the high consistency group was significantly higher than the low consistency group and normal control group (LSD-t=0.33, 0.57; P<0.05). The number density of α-SMA of primary tumor tissue in the normal control group, low consistency group and high consistency group were (19±4) , (42±4) and (62±6) /high power field. The number density of α-SMA in the high consistency group was significantly larger compared with the other 2 groups (LSD-t=2.12, 2.12; P<0.05). The number density of GFAP in the normal control group, low consistency group and high consistency group were (15±4), (36±5), (57±5)/high power field respectively. The number density of GFAP in the high consistency group was obviously larger compared with the other 2 groups, and significant difference was observed (LSD-t=2.00, 2.00; P<0.05). The number density of CD34 of primary tumor in the normal control group, the low consistency group and high consistency group were (19.0±2.6), (31.0±6.2), (43.0±8.3)/high power field, of which the high consistency group was significantly larger than the other 2 groups (LSD-t=2.75, 2.75; P<0.05). The number density of CD34 in the liver metastases with the tumor diameter less than 1 mm was (2.1±0.6)/high power field, and in the metastases with diameter between 1 to 3 mm was (11.2±3.3)/high power field, which was significantly higher than the former(t=8.69, P<0.05). The expression (optical density) of VEGF from primary tumors in the normal control group, the low consistency group and high consistency group were 0.21±0.05, 0.31±0.06, 0.42±0.06 respectively and the optical density of VEGF in the high consistency group was higher compared with the other 2 groups (LSD-t=0.07, 0.07; P<0.05). The protein level of VEGF of the hepatic primary tumor tissue in the normal control group, the low consistency group and high consistency group were 0.19±0.02, 0.36±0.05, 0.45±0.06 respectively, of which the high consistency group was obviously higher than the other 2 groups (LSD-t=0.02, 0.02; P<0.05). The proliferating cell nuclear antigen-labeling index(PCNA-LI) in the normal control group, low consistency group and high consistency group were (46±7)%,(68±10)%,(87±9)% respectvely, of which the high consistency group was significantly higher than the other 2 groups (LSD-t=3.89, 3.89; P<0.05).

Conclusion

HSC may promote HCC proliferation and metastasis through regulation of angiogenesis.

图1 荧光显微镜下观察裸鼠肝脏HSC细胞质中α-SMA、GFAP表达及CFSE标记的肝星状细胞图像
图2 三组裸鼠肝脏肿瘤大体标本图像
表1 3组裸鼠体内肿瘤生长情况比较(±s
图3 荧光显微镜下观察CFSE标志的肝星状细胞在三组裸鼠肝肿瘤标本中的表达
图4 三组裸鼠体内原发肿瘤组织中CD34表达(免疫组化法 ×200)
图5 三组裸鼠体内原发肿瘤组织中CD34表达(免疫荧光染色 ×200)
图6 三组裸鼠体内原发肿瘤组织中VEGF表达
图7 三组裸鼠体内原发肿瘤组织中PCNA表达
[1]
Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin, 2005, 55(2):74-108.
[2]
Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature, 2001, 411(6835):375-379.
[3]
Koukourakis MI, Giatromanolaki A, Harris AL, et al. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res, 2006, 66(2):632-637.
[4]
Olaso E, Santisteban A, Bidaurrazaga J, et al. Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology, 2009, 26(3):634-642.
[5]
Jia YL, Shi L, Zhou JN, et al. Epimorphin promotes human hepatocellular carcinoma invasion and metastasis through activation of focal adhesion kinase/extracellular signal-regulated kinase/matrix metalloproteinase-9 axis. Hepatology, 2011, 54(5):1808-1818.
[6]
Guo J, Friedman SL. Hepatic fibrogenesis. Semin Liver Dis, 2007, 27(4):413-426.
[7]
王伟,官阳,杨木兰,等.活化肝星状细胞与肝细胞肝癌发生及转移的相关性.临床与实验病理学杂志, 2007, 23(4):492-494.
[8]
Le Pabic H, Bonnier D, Wewer UM, et al. ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling. Hepatology, 2003, 37(5):1056-1066.
[9]
Bai X, Wu L, Liang T, et al. Overexpression of myocyte enhancer factor 2 and histone hyperacetylation in hepatocellular carcinoma. J Cancer Res Clin Oncol, 2008, 134(1):83-91.
[10]
Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6):1655-1669.
[11]
Thabut D, Shah V. Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: new targets for the treatment of portal hypertension? J Hepatol, 2010, 53(5):976-980.
[12]
Jung JO, Gwak GY, Lim YS, et al. Role of hepatic stellate cells in the angiogenesis of hepatoma. Korean J Gastroenterol(韩文), 2003, 42(2):142-148.
[13]
Sancho-Bru P, Juez E, Moreno M, et al. Hepatocarcinoma cells stimulate the growth, migration and expression of pro-angiogenic genes in human hepatic stellate cells. Liver Int, 2010, 30(1):31-41.
[14]
Olaso E, Salado C, Egilegor E, et al. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology, 2003, 37(3):674-685.
[15]
Lee KW, Yoon JJ, Lee JH, et al. Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan. Transplant Proc, 2004, 36(8):2464-2465.
[16]
Faouzi S, Lepreux S, Bedin C, et al. Activation of cultured rat hepatic stellate cells by tumoral hepatocytes. Lab Invest, 1999, 79(4):485-493.
[17]
Shirai Y, Kawata S, Tamura S, et al. Plasma transforming growth factor-beta 1 in patients with hepatocellular carcinoma. comparison with chronic liver diseases. Cancer, 1994, 73(9):2275-2279.
[18]
Jaster R, Sparmann G, Emmrich J, et al. Extracellular signal regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells. Gut, 2002, 51(4):579-584.
[1] 李淼, 朱连华, 韩鹏, 姜波, 费翔. 高帧频超声造影评价肝细胞癌血管形态与风险因素的研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 911-915.
[2] 杜锡林, 谭凯, 贺小军, 白亮亮, 赵瑶瑶. 肝细胞癌转化治疗方式[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 597-601.
[3] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[4] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[5] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[6] 张文华, 陶焠, 胡添松. 不同部位外生型肝癌临床病理特点及其对术后肝内复发和预后影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 651-655.
[7] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[8] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[9] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[10] 叶文涛, 吴忠均, 廖锐. 癌旁组织ALOX15表达与肝癌根治性切除术后预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 708-712.
[11] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[12] 何传超, 肖治宇. 晚期肝癌综合治疗模式与策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 486-489.
[13] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[14] 王峰杰, 王礼光, 廖珊, 刘颖, 符荣党, 陈焕伟. 腹腔镜右半肝切除术治疗肝癌的安全性与疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 517-522.
[15] 张海涛, 贾哲, 马超, 张其坤, 武聚山, 郭庆良, 曾道炳, 栗光明, 王孟龙. 手术切除与射频消融治疗血管周围型单发小肝癌临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 523-527.
阅读次数
全文


摘要