切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2013, Vol. 02 ›› Issue (03) : 186 -193. doi: 10.3877/cma.j.issn.2095-3232.2013.03.011

所属专题: 文献

基础研究

活化态肝星状细胞对小鼠肝细胞肝癌血管形成、肿瘤生长及转移的作用
陈之巨1, 林楠1, 潘楚芝1, 卢逸1, 许瑞云1,()   
  1. 1. 510680 广州,中山大学附属第三医院肝胆外科
  • 收稿日期:2013-03-18 出版日期:2013-06-10
  • 通信作者: 许瑞云
  • 基金资助:
    国家自然科学基金资助项目(81272642); 中央高校基本科研业务费专项资金资助项目(11ykpy40)

Promotion of activated hepatic stellate cells to the angiogenesis, proliferation and metastasis of hepatocellular carcinoma in mice

Zhi-ju CHEN1, Nan LIN1, Chu-zhi PAN1, Yi LU1, Rui-yun XU1,()   

  1. 1. Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Sun Yet-sen University, Guangzhou 510630, China
  • Received:2013-03-18 Published:2013-06-10
  • Corresponding author: Rui-yun XU
  • About author:
    Corresponding author: XU Rui-yun, Email:
引用本文:

陈之巨, 林楠, 潘楚芝, 卢逸, 许瑞云. 活化态肝星状细胞对小鼠肝细胞肝癌血管形成、肿瘤生长及转移的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2013, 02(03): 186-193.

Zhi-ju CHEN, Nan LIN, Chu-zhi PAN, Yi LU, Rui-yun XU. Promotion of activated hepatic stellate cells to the angiogenesis, proliferation and metastasis of hepatocellular carcinoma in mice[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2013, 02(03): 186-193.

目的

探讨活化态的肝星状细胞(HSC)对小鼠肝细胞肝癌(肝癌)血管形成、肿瘤生长及转移的作用。

方法

将30只BALB/c-nu雌性裸鼠按随机数字表法分成3组,每组各10只,单纯组将1×106个H22肝癌细胞注射于裸鼠肝脏,低浓度组将1×106个H22肝癌细胞及1×105个羟基荧光素二醋酸盐琥珀酰亚胺酯(CFSE)标记的HSC-T6细胞注射于裸鼠肝脏,高浓度组将1×106个H22肝癌细胞及4×105个CFSE标记的HSC-T6细胞注射于裸鼠肝脏;各组裸鼠生长50 d后处死,观察肝原位肿瘤、肝转移瘤、肺转移瘤的数量和体积。应用免疫组织化学方法(免疫组化法)检测肝原发肿瘤组织、肝转移瘤组织及肺转移瘤α-平滑肌肌动蛋白(α-SMA)、胶质纤维酸性蛋白(GFAP)、分化群抗原(CD)34、血管内皮生长因子(VEGF)及增殖细胞核抗原(PCNA)的表达水平;用蛋白质印迹法检测VEGF蛋白含量。观察HSC对肝癌血管形成、增殖作用影响。两组实验数据比较采用t检验,3组实验数据比较采用单因素方差分析,两两比较采用LSD-t检验。

结果

免疫荧光法检测显示HSC-T6细胞株中HSC细胞纯度>95%,CFSE标记的HSC为绿色荧光细胞,细胞培养8周,CFSE染色的荧光强度稳定。单纯组肝癌成瘤率70%,低浓度组成瘤率70%,高浓度组成瘤率为80%。高浓度组肝内原位肿瘤体积明显大于低浓度组及单纯肝癌细胞组,差异有统计学意义(LSD-t=0.04,0.04;P<0.05)。高浓度组裸鼠肝内转移瘤及肺转移瘤数目明显多于低浓度组及单纯组(LSD-t=0.33,0.57;P<0.05)。单纯组、低浓度组及高浓度组原发肿瘤组织中α-SMA数密度分别为(19±4)、(42±4)及(62±6)个/高倍镜视野,高浓度组α-SMA数密度明显多于低浓度组及单纯肝癌细胞组,差异有统计学意义(LSD-t=2.12,2.12;P<0.05);单纯组、低浓度组及高浓度组原发肿瘤组织中GFAP数密度分别为(15±4)、(36±5)、(57±5)个/高倍镜视野,高浓度组GFAP数密度明显多于低浓度组及单纯肝癌细胞组,差异有统计学意义(LSD-t=2.00,2.00;P<0.05)。单纯组、低浓度组及高浓度组原发肿瘤组织中CD34数密度分别为(19.0±2.6)、(31.0±6.2)、(43.0±8.3)个/高倍镜视野,高浓度组CD34数密度明显多于低浓度组及单纯组(LSD-t=2.75,2.75;P<0.05)。肝转移瘤组织标本中,肿瘤直径<1 mm的肝转移瘤中见微量CD34表达,数密度为(2.1±0.6)个/高倍镜视野;在肿瘤直径为1~3 mm的肝转移瘤中,CD34表达的数密度为(11.2±3.3)个/高倍镜视野,明显多于在直径<1 mm的肝转移瘤组织(t=8.69,P<0.05)。单纯组、低浓度组及高浓度组原位肿瘤标本中VEGF吸光度值分别为0.21±0.05、0.31±0.06、0.42±0.06,高浓度组VEGF吸光度值明显高于低密度组及单纯组(LSD-t=0.07,0.07;P<0.05)。单纯组、低浓度组及高浓度组肝原位肿瘤VEGF蛋白相对含量分别为0.19±0.02、0.36±0.05、0.45±0.06,高浓度组VEGF蛋白相对含量明显高于低密度组及单纯组(LSD-t=0.02,0.02;P<0.05)。单纯组、低浓度组及高浓度组原位肿瘤标本PCNA增殖指数(PCNA-LI)分别为(46±7)%、(68±10)%、(87±9)%,高浓度组明显多于低浓度组和单纯组,差异有统计学意义(LSD-t=3.89,3.89;P<0.05)。

结论

HSC可能通过调节肝癌血管形成而影响肝癌生长及转移。

Objective

To investigate the effect of activated hepatic stellate cells(HSC) to angiogenesis, proliferation and metastasis of hepatocellular carcinoma (HCC).

Methods

Thirty BALB/c-nu female nude mice were divided into 3 groups according to randomly digital table: normal control group, low consistency group and high consistency group with 10 mice in each group. Mice in the normal control group received an intrahepatic injection of 1×106 hepatoma cells(H22), low consistency group 1×106 H22 and 1×105 HSC-T6 cells labeled by (5, 6-carboxyfluorescein diacetate, succinimidyl ester, CFSE) , and high consistency group 1×106 H22 and 4×105 HSC-T6 cells labeled by CFSE. The mice in 3 groups were killed after 50 days and the number and size of tumors in situ, hepatic and pulmonary metastases were observed. The expression level of α-smooth muscle actin(α-SMA), glial fibrillary acidic protein (GFAP) , cluster of differentiation(CD) 34, vascular endothelial growth factor (VEGF) , proliferating cell nuclear antigen (PCNA) in tissues of primary tumors, hepatic and pulmonary metastases were tested by immunohistochemistry. Western blot were used to examine the protein level of VEGF. The effect of HSC to the angiogenesis, proliferation of HCC was observed. The experimental data between two groups was compared using t test. And the data of three groups were compared using one-way analysis of variance, and the comparison between two groups was performed using LSD-t test.

Results

The cell purity of HSC>95% in the cell line of HSC-T6. The HSC labeled by CFSE were green fluorescent cells. The fluorescent intensity of CFSE staining of was stable after 8 weeks of cell culture. The tumor formation rate in the normal control group was 70%, low consistency group was 70%, and the high consistency group was 80%. The size of primary tumors in the high consistency group was obviously larger than the other 2 groups, and there was significant difference (LSD-t=0.04, 0.04; P<0.05). The number of intrahepatic and pulmonary metastases of mice in the high consistency group was significantly higher than the low consistency group and normal control group (LSD-t=0.33, 0.57; P<0.05). The number density of α-SMA of primary tumor tissue in the normal control group, low consistency group and high consistency group were (19±4) , (42±4) and (62±6) /high power field. The number density of α-SMA in the high consistency group was significantly larger compared with the other 2 groups (LSD-t=2.12, 2.12; P<0.05). The number density of GFAP in the normal control group, low consistency group and high consistency group were (15±4), (36±5), (57±5)/high power field respectively. The number density of GFAP in the high consistency group was obviously larger compared with the other 2 groups, and significant difference was observed (LSD-t=2.00, 2.00; P<0.05). The number density of CD34 of primary tumor in the normal control group, the low consistency group and high consistency group were (19.0±2.6), (31.0±6.2), (43.0±8.3)/high power field, of which the high consistency group was significantly larger than the other 2 groups (LSD-t=2.75, 2.75; P<0.05). The number density of CD34 in the liver metastases with the tumor diameter less than 1 mm was (2.1±0.6)/high power field, and in the metastases with diameter between 1 to 3 mm was (11.2±3.3)/high power field, which was significantly higher than the former(t=8.69, P<0.05). The expression (optical density) of VEGF from primary tumors in the normal control group, the low consistency group and high consistency group were 0.21±0.05, 0.31±0.06, 0.42±0.06 respectively and the optical density of VEGF in the high consistency group was higher compared with the other 2 groups (LSD-t=0.07, 0.07; P<0.05). The protein level of VEGF of the hepatic primary tumor tissue in the normal control group, the low consistency group and high consistency group were 0.19±0.02, 0.36±0.05, 0.45±0.06 respectively, of which the high consistency group was obviously higher than the other 2 groups (LSD-t=0.02, 0.02; P<0.05). The proliferating cell nuclear antigen-labeling index(PCNA-LI) in the normal control group, low consistency group and high consistency group were (46±7)%,(68±10)%,(87±9)% respectvely, of which the high consistency group was significantly higher than the other 2 groups (LSD-t=3.89, 3.89; P<0.05).

Conclusion

HSC may promote HCC proliferation and metastasis through regulation of angiogenesis.

图1 荧光显微镜下观察裸鼠肝脏HSC细胞质中α-SMA、GFAP表达及CFSE标记的肝星状细胞图像
图2 三组裸鼠肝脏肿瘤大体标本图像
表1 3组裸鼠体内肿瘤生长情况比较(±s
图3 荧光显微镜下观察CFSE标志的肝星状细胞在三组裸鼠肝肿瘤标本中的表达
图4 三组裸鼠体内原发肿瘤组织中CD34表达(免疫组化法 ×200)
图5 三组裸鼠体内原发肿瘤组织中CD34表达(免疫荧光染色 ×200)
图6 三组裸鼠体内原发肿瘤组织中VEGF表达
图7 三组裸鼠体内原发肿瘤组织中PCNA表达
[1]
Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin, 2005, 55(2):74-108.
[2]
Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature, 2001, 411(6835):375-379.
[3]
Koukourakis MI, Giatromanolaki A, Harris AL, et al. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res, 2006, 66(2):632-637.
[4]
Olaso E, Santisteban A, Bidaurrazaga J, et al. Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology, 2009, 26(3):634-642.
[5]
Jia YL, Shi L, Zhou JN, et al. Epimorphin promotes human hepatocellular carcinoma invasion and metastasis through activation of focal adhesion kinase/extracellular signal-regulated kinase/matrix metalloproteinase-9 axis. Hepatology, 2011, 54(5):1808-1818.
[6]
Guo J, Friedman SL. Hepatic fibrogenesis. Semin Liver Dis, 2007, 27(4):413-426.
[7]
王伟,官阳,杨木兰,等.活化肝星状细胞与肝细胞肝癌发生及转移的相关性.临床与实验病理学杂志, 2007, 23(4):492-494.
[8]
Le Pabic H, Bonnier D, Wewer UM, et al. ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling. Hepatology, 2003, 37(5):1056-1066.
[9]
Bai X, Wu L, Liang T, et al. Overexpression of myocyte enhancer factor 2 and histone hyperacetylation in hepatocellular carcinoma. J Cancer Res Clin Oncol, 2008, 134(1):83-91.
[10]
Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6):1655-1669.
[11]
Thabut D, Shah V. Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: new targets for the treatment of portal hypertension? J Hepatol, 2010, 53(5):976-980.
[12]
Jung JO, Gwak GY, Lim YS, et al. Role of hepatic stellate cells in the angiogenesis of hepatoma. Korean J Gastroenterol(韩文), 2003, 42(2):142-148.
[13]
Sancho-Bru P, Juez E, Moreno M, et al. Hepatocarcinoma cells stimulate the growth, migration and expression of pro-angiogenic genes in human hepatic stellate cells. Liver Int, 2010, 30(1):31-41.
[14]
Olaso E, Salado C, Egilegor E, et al. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology, 2003, 37(3):674-685.
[15]
Lee KW, Yoon JJ, Lee JH, et al. Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan. Transplant Proc, 2004, 36(8):2464-2465.
[16]
Faouzi S, Lepreux S, Bedin C, et al. Activation of cultured rat hepatic stellate cells by tumoral hepatocytes. Lab Invest, 1999, 79(4):485-493.
[17]
Shirai Y, Kawata S, Tamura S, et al. Plasma transforming growth factor-beta 1 in patients with hepatocellular carcinoma. comparison with chronic liver diseases. Cancer, 1994, 73(9):2275-2279.
[18]
Jaster R, Sparmann G, Emmrich J, et al. Extracellular signal regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells. Gut, 2002, 51(4):579-584.
[1] 中国医师协会肝癌专业委员会. 肝细胞癌伴微血管侵犯诊断和治疗中国专家共识(2024版)[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 313-324.
[2] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[3] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[4] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[5] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[6] 李一帆, 朱帝文, 任伟新, 鲍应军, 顾俊鹏, 张海潇, 曹耿飞, 阿斯哈尔·哈斯木, 纪卫政. 血GP73水平在原发性肝癌TACE疗效评价中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 825-830.
[7] 刘敏思, 李荣, 李媚. 基于GGT与Plt比值的模型在HBV相关肝细胞癌诊断中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 831-835.
[8] 焦振东, 惠鹏, 金上博. 三维可视化结合ICG显像技术在腹腔镜肝切除术治疗复发性肝癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 859-864.
[9] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[10] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[11] 吴警, 吐尔洪江·吐逊, 温浩. 肝切除术前肝功能评估新进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 889-893.
[12] 邓万玉, 陈富, 许磊波. 肝硬化与非肝硬化乙肝相关性肝癌患者术后无复发生存比较及其影响因素分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 670-674.
[13] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[14] 中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 407-449.
[15] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?